src/array_list.c

Fri, 05 May 2023 19:07:56 +0200

author
Mike Becker <universe@uap-core.de>
date
Fri, 05 May 2023 19:07:56 +0200
changeset 702
3390b58ad15a
parent 699
35b2b99ee523
child 708
1caed6c9ba68
permissions
-rw-r--r--

fix cx_linked_list_sort() not working for empty lists

     1 /*
     2  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER.
     3  *
     4  * Copyright 2021 Mike Becker, Olaf Wintermann All rights reserved.
     5  *
     6  * Redistribution and use in source and binary forms, with or without
     7  * modification, are permitted provided that the following conditions are met:
     8  *
     9  *   1. Redistributions of source code must retain the above copyright
    10  *      notice, this list of conditions and the following disclaimer.
    11  *
    12  *   2. Redistributions in binary form must reproduce the above copyright
    13  *      notice, this list of conditions and the following disclaimer in the
    14  *      documentation and/or other materials provided with the distribution.
    15  *
    16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
    17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    19  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
    20  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    26  * POSSIBILITY OF SUCH DAMAGE.
    27  */
    29 #include "cx/array_list.h"
    30 #include <assert.h>
    31 #include <string.h>
    33 // LOW LEVEL ARRAY LIST FUNCTIONS
    35 enum cx_array_copy_result cx_array_copy(
    36         void **target,
    37         size_t *size,
    38         size_t *capacity,
    39         size_t index,
    40         void const *src,
    41         size_t elem_size,
    42         size_t elem_count,
    43         struct cx_array_reallocator_s *reallocator
    44 ) {
    45     // assert pointers
    46     assert(target != NULL);
    47     assert(size != NULL);
    48     assert(src != NULL);
    50     // determine capacity
    51     size_t cap = capacity == NULL ? *size : *capacity;
    53     // check if resize is required
    54     size_t minsize = index + elem_count;
    55     size_t newsize = *size < minsize ? minsize : *size;
    56     bool needrealloc = newsize > cap;
    58     // reallocate if possible
    59     if (needrealloc) {
    60         // a reallocator and a capacity variable must be available
    61         if (reallocator == NULL || capacity == NULL) {
    62             return CX_ARRAY_COPY_REALLOC_NOT_SUPPORTED;
    63         }
    65         // check, if we need to repair the src pointer
    66         uintptr_t targetaddr = (uintptr_t) *target;
    67         uintptr_t srcaddr = (uintptr_t) src;
    68         bool repairsrc = targetaddr <= srcaddr
    69                          && srcaddr < targetaddr + cap * elem_size;
    71         // calculate new capacity (next number divisible by 16)
    72         cap = newsize - (newsize % 16) + 16;
    73         assert(cap > newsize);
    75         // perform reallocation
    76         void *newmem = reallocator->realloc(
    77                 *target, cap, elem_size, reallocator
    78         );
    79         if (newmem == NULL) {
    80             return CX_ARRAY_COPY_REALLOC_FAILED;
    81         }
    83         // repair src pointer, if necessary
    84         if (repairsrc) {
    85             src = ((char *) newmem) + (srcaddr - targetaddr);
    86         }
    88         // store new pointer and capacity
    89         *target = newmem;
    90         *capacity = cap;
    91     }
    93     // determine target pointer
    94     char *start = *target;
    95     start += index * elem_size;
    97     // copy elements and set new size
    98     memmove(start, src, elem_count * elem_size);
    99     *size = newsize;
   101     // return successfully
   102     return CX_ARRAY_COPY_SUCCESS;
   103 }
   105 #ifndef CX_ARRAY_SWAP_SBO_SIZE
   106 #define CX_ARRAY_SWAP_SBO_SIZE 512
   107 #endif
   109 void cx_array_swap(
   110         void *arr,
   111         size_t elem_size,
   112         size_t idx1,
   113         size_t idx2
   114 ) {
   115     assert(arr != NULL);
   117     // short circuit
   118     if (idx1 == idx2) return;
   120     char sbo_mem[CX_ARRAY_SWAP_SBO_SIZE];
   121     void *tmp;
   123     // decide if we can use the local buffer
   124     if (elem_size > CX_ARRAY_SWAP_SBO_SIZE) {
   125         tmp = malloc(elem_size);
   126         // we don't want to enforce error handling
   127         if (tmp == NULL) abort();
   128     } else {
   129         tmp = sbo_mem;
   130     }
   132     // calculate memory locations
   133     char *left = arr, *right = arr;
   134     left += idx1 * elem_size;
   135     right += idx2 * elem_size;
   137     // three-way swap
   138     memcpy(tmp, left, elem_size);
   139     memcpy(left, right, elem_size);
   140     memcpy(right, tmp, elem_size);
   142     // free dynamic memory, if it was needed
   143     if (tmp != sbo_mem) {
   144         free(tmp);
   145     }
   146 }
   148 // HIGH LEVEL ARRAY LIST FUNCTIONS
   150 typedef struct {
   151     struct cx_list_s base;
   152     void *data;
   153     size_t capacity;
   154     struct cx_array_reallocator_s reallocator;
   155 } cx_array_list;
   157 static void *cx_arl_realloc(
   158         void *array,
   159         size_t capacity,
   160         size_t elem_size,
   161         struct cx_array_reallocator_s *alloc
   162 ) {
   163     // retrieve the pointer to the list allocator
   164     CxAllocator const *al = alloc->ptr1;
   166     // use the list allocator to reallocate the memory
   167     return cxRealloc(al, array, capacity * elem_size);
   168 }
   170 static void cx_arl_destructor(struct cx_list_s *list) {
   171     cx_array_list *arl = (cx_array_list *) list;
   172     cxFree(list->allocator, arl->data);
   173 }
   175 static size_t cx_arl_insert_array(
   176         struct cx_list_s *list,
   177         size_t index,
   178         void const *array,
   179         size_t n
   180 ) {
   181     // out of bounds and special case check
   182     if (index > list->size || n == 0) return 0;
   184     // get a correctly typed pointer to the list
   185     cx_array_list *arl = (cx_array_list *) list;
   187     // do we need to move some elements?
   188     if (index < list->size) {
   189         char const *first_to_move = (char const *) arl->data;
   190         first_to_move += index * list->item_size;
   191         size_t elems_to_move = list->size - index;
   192         size_t start_of_moved = index + n;
   194         if (CX_ARRAY_COPY_SUCCESS != cx_array_copy(
   195                 &arl->data,
   196                 &list->size,
   197                 &arl->capacity,
   198                 start_of_moved,
   199                 first_to_move,
   200                 list->item_size,
   201                 elems_to_move,
   202                 &arl->reallocator
   203         )) {
   204             // if moving existing elems is unsuccessful, abort
   205             return 0;
   206         }
   207     }
   209     // note that if we had to move the elements, the following operation
   210     // is guaranteed to succeed, because we have the memory already allocated
   211     // therefore, it is impossible to leave this function with an invalid array
   213     // place the new elements
   214     if (CX_ARRAY_COPY_SUCCESS == cx_array_copy(
   215             &arl->data,
   216             &list->size,
   217             &arl->capacity,
   218             index,
   219             array,
   220             list->item_size,
   221             n,
   222             &arl->reallocator
   223     )) {
   224         return n;
   225     } else {
   226         // array list implementation is "all or nothing"
   227         return 0;
   228     }
   229 }
   231 static int cx_arl_insert_element(
   232         struct cx_list_s *list,
   233         size_t index,
   234         void const *element
   235 ) {
   236     return 1 != cx_arl_insert_array(list, index, element, 1);
   237 }
   239 static int cx_arl_insert_iter(
   240         struct cx_mut_iterator_s *iter,
   241         void const *elem,
   242         int prepend
   243 ) {
   244     struct cx_list_s *list = iter->src_handle;
   245     if (iter->index < list->size) {
   246         int result = cx_arl_insert_element(
   247                 list,
   248                 iter->index + 1 - prepend,
   249                 elem
   250         );
   251         if (result == 0 && prepend != 0) {
   252             iter->index++;
   253             iter->elem_handle = ((char *) iter->elem_handle) + list->item_size;
   254         }
   255         return result;
   256     } else {
   257         int result = cx_arl_insert_element(list, list->size, elem);
   258         iter->index = list->size;
   259         return result;
   260     }
   261 }
   263 static int cx_arl_remove(
   264         struct cx_list_s *list,
   265         size_t index
   266 ) {
   267     cx_array_list *arl = (cx_array_list *) list;
   269     // out-of-bounds check
   270     if (index >= list->size) {
   271         return 1;
   272     }
   274     // content destruction
   275     cx_invoke_destructor(list, ((char *) arl->data) + index * list->item_size);
   277     // short-circuit removal of last element
   278     if (index == list->size - 1) {
   279         list->size--;
   280         return 0;
   281     }
   283     // just move the elements starting at index to the left
   284     int result = cx_array_copy(
   285             &arl->data,
   286             &list->size,
   287             &arl->capacity,
   288             index,
   289             ((char *) arl->data) + (index + 1) * list->item_size,
   290             list->item_size,
   291             list->size - index - 1,
   292             &arl->reallocator
   293     );
   294     if (result == 0) {
   295         // decrease the size
   296         list->size--;
   297     }
   298     return result;
   299 }
   301 static void cx_arl_clear(struct cx_list_s *list) {
   302     if (list->size == 0) return;
   304     cx_array_list *arl = (cx_array_list *) list;
   305     char *ptr = arl->data;
   307     if (list->simple_destructor) {
   308         for (size_t i = 0; i < list->size; i++) {
   309             cx_invoke_simple_destructor(list, ptr);
   310             ptr += list->item_size;
   311         }
   312     }
   313     if (list->advanced_destructor) {
   314         for (size_t i = 0; i < list->size; i++) {
   315             cx_invoke_advanced_destructor(list, ptr);
   316             ptr += list->item_size;
   317         }
   318     }
   320     memset(arl->data, 0, list->size * list->item_size);
   321     list->size = 0;
   322 }
   324 static int cx_arl_swap(
   325         struct cx_list_s *list,
   326         size_t i,
   327         size_t j
   328 ) {
   329     if (i >= list->size || j >= list->size) return 1;
   330     cx_array_list *arl = (cx_array_list *) list;
   331     cx_array_swap(arl->data, list->item_size, i, j);
   332     return 0;
   333 }
   335 static void *cx_arl_at(
   336         struct cx_list_s const *list,
   337         size_t index
   338 ) {
   339     if (index < list->size) {
   340         cx_array_list const *arl = (cx_array_list const *) list;
   341         char *space = arl->data;
   342         return space + index * list->item_size;
   343     } else {
   344         return NULL;
   345     }
   346 }
   348 static ssize_t cx_arl_find(
   349         struct cx_list_s const *list,
   350         void const *elem
   351 ) {
   352     assert(list->cmpfunc != NULL);
   353     assert(list->size < SIZE_MAX / 2);
   354     char *cur = ((cx_array_list const *) list)->data;
   356     for (ssize_t i = 0; i < (ssize_t) list->size; i++) {
   357         if (0 == list->cmpfunc(elem, cur)) {
   358             return i;
   359         }
   360         cur += list->item_size;
   361     }
   363     return -1;
   364 }
   366 static void cx_arl_sort(struct cx_list_s *list) {
   367     assert(list->cmpfunc != NULL);
   368     qsort(((cx_array_list *) list)->data,
   369           list->size,
   370           list->item_size,
   371           list->cmpfunc
   372     );
   373 }
   375 static int cx_arl_compare(
   376         struct cx_list_s const *list,
   377         struct cx_list_s const *other
   378 ) {
   379     assert(list->cmpfunc != NULL);
   380     if (list->size == other->size) {
   381         char const *left = ((cx_array_list const *) list)->data;
   382         char const *right = ((cx_array_list const *) other)->data;
   383         for (size_t i = 0; i < list->size; i++) {
   384             int d = list->cmpfunc(left, right);
   385             if (d != 0) {
   386                 return d;
   387             }
   388             left += list->item_size;
   389             right += other->item_size;
   390         }
   391         return 0;
   392     } else {
   393         return list->size < other->size ? -1 : 1;
   394     }
   395 }
   397 static void cx_arl_reverse(struct cx_list_s *list) {
   398     if (list->size < 2) return;
   399     void *data = ((cx_array_list const *) list)->data;
   400     size_t half = list->size / 2;
   401     for (size_t i = 0; i < half; i++) {
   402         cx_array_swap(data, list->item_size, i, list->size - 1 - i);
   403     }
   404 }
   406 static bool cx_arl_iter_valid(void const *it) {
   407     struct cx_iterator_s const *iter = it;
   408     struct cx_list_s const *list = iter->src_handle;
   409     return iter->index < list->size;
   410 }
   412 static void *cx_arl_iter_current(void const *it) {
   413     struct cx_iterator_s const *iter = it;
   414     return iter->elem_handle;
   415 }
   417 static void cx_arl_iter_next(void *it) {
   418     struct cx_iterator_base_s *itbase = it;
   419     if (itbase->remove) {
   420         struct cx_mut_iterator_s *iter = it;
   421         itbase->remove = false;
   422         cx_arl_remove(iter->src_handle, iter->index);
   423     } else {
   424         struct cx_iterator_s *iter = it;
   425         iter->index++;
   426         iter->elem_handle =
   427                 ((char *) iter->elem_handle)
   428                 + ((struct cx_list_s const *) iter->src_handle)->item_size;
   429     }
   430 }
   432 static void cx_arl_iter_prev(void *it) {
   433     struct cx_iterator_base_s *itbase = it;
   434     struct cx_mut_iterator_s *iter = it;
   435     cx_array_list *const list = iter->src_handle;
   436     if (itbase->remove) {
   437         itbase->remove = false;
   438         cx_arl_remove(iter->src_handle, iter->index);
   439     }
   440     iter->index--;
   441     if (iter->index < list->base.size) {
   442         iter->elem_handle = ((char *) list->data)
   443                             + iter->index * list->base.item_size;
   444     }
   445 }
   447 static bool cx_arl_iter_flag_rm(void *it) {
   448     struct cx_iterator_base_s *iter = it;
   449     if (iter->mutating) {
   450         iter->remove = true;
   451         return true;
   452     } else {
   453         return false;
   454     }
   455 }
   457 static struct cx_iterator_s cx_arl_iterator(
   458         struct cx_list_s const *list,
   459         size_t index,
   460         bool backwards
   461 ) {
   462     struct cx_iterator_s iter;
   464     iter.index = index;
   465     iter.src_handle = list;
   466     iter.elem_handle = cx_arl_at(list, index);
   467     iter.base.valid = cx_arl_iter_valid;
   468     iter.base.current = cx_arl_iter_current;
   469     iter.base.next = backwards ? cx_arl_iter_prev : cx_arl_iter_next;
   470     iter.base.flag_removal = cx_arl_iter_flag_rm;
   471     iter.base.remove = false;
   472     iter.base.mutating = false;
   474     return iter;
   475 }
   477 static cx_list_class cx_array_list_class = {
   478         cx_arl_destructor,
   479         cx_arl_insert_element,
   480         cx_arl_insert_array,
   481         cx_arl_insert_iter,
   482         cx_arl_remove,
   483         cx_arl_clear,
   484         cx_arl_swap,
   485         cx_arl_at,
   486         cx_arl_find,
   487         cx_arl_sort,
   488         cx_arl_compare,
   489         cx_arl_reverse,
   490         cx_arl_iterator,
   491 };
   493 CxList *cxArrayListCreate(
   494         CxAllocator const *allocator,
   495         cx_compare_func comparator,
   496         size_t item_size,
   497         size_t initial_capacity
   498 ) {
   499     if (allocator == NULL) {
   500         allocator = cxDefaultAllocator;
   501     }
   503     cx_array_list *list = cxCalloc(allocator, 1, sizeof(cx_array_list));
   504     if (list == NULL) return NULL;
   506     list->base.cl = &cx_array_list_class;
   507     list->base.allocator = allocator;
   508     list->base.cmpfunc = comparator;
   509     list->capacity = initial_capacity;
   511     if (item_size > 0) {
   512         list->base.item_size = item_size;
   513     } else {
   514         item_size = sizeof(void *);
   515         cxListStorePointers((CxList *) list);
   516     }
   518     // allocate the array after the real item_size is known
   519     list->data = cxCalloc(allocator, initial_capacity, item_size);
   520     if (list->data == NULL) {
   521         cxFree(allocator, list);
   522         return NULL;
   523     }
   525     // configure the reallocator
   526     list->reallocator.realloc = cx_arl_realloc;
   527     list->reallocator.ptr1 = (void *) allocator;
   529     return (CxList *) list;
   530 }

mercurial