docs/src/modules.md

Fri, 11 May 2018 18:46:31 +0200

author
Mike Becker <universe@uap-core.de>
date
Fri, 11 May 2018 18:46:31 +0200
changeset 294
bfa935ab7f85
parent 290
d5d6ab809ad3
child 295
7fc65395188e
permissions
-rw-r--r--

example code for the usage of a UcxList

universe@264 1 ---
universe@264 2 title: Modules
universe@264 3 ---
universe@259 4
universe@259 5 UCX provides several modules for data structures and algorithms.
universe@259 6 You may choose to use specific modules by inclueding the corresponding header
universe@259 7 file.
universe@259 8 Please note, that some modules make use of other UCX modules.
universe@259 9 For instance, the [Allocator](#allocator) module is used by many other modules
universe@259 10 to allow flexible memory allocation.
universe@259 11 By default the header files are placed into an `ucx` directory within your
universe@282 12 systems include directory. In this case you can use a module by including it
universe@259 13 via `#include <ucx/MODULENAME.h>`.
universe@259 14 Required modules are included automatically.
universe@259 15
universe@267 16 <div id="modules" align="center">
universe@267 17
universe@280 18 ----------------------- ---------------------- ---------------------------- -------------------------
universe@280 19 [Allocator](#allocator) [AVL&nbsp;Tree](#avl-tree) [Buffer](#buffer) [List](#list)
universe@280 20 [Logging](#logging) [Map](#map) [Memory&nbsp;Pool](#memory-pool) [Properties](#properties)
universe@280 21 [Stack](#stack) [String](#string) [Testing](#testing) [Utilities](#utilities)
universe@280 22 ----------------------- ---------------------- ---------------------------- -------------------------
universe@267 23
universe@267 24 </div>
universe@267 25
universe@259 26 ## Allocator
universe@259 27
universe@259 28 *Header file:* [allocator.h](api/allocator_8h.html)
universe@259 29 *Required modules:* None.
universe@259 30
universe@259 31 A UCX allocator consists of a pointer to the memory area / pool and four
universe@259 32 function pointers to memory management functions operating on this memory
universe@259 33 area / pool. These functions shall behave equivalent to the standard libc
universe@259 34 functions `malloc`, `calloc`, `realloc` and `free`.
universe@259 35
universe@259 36 The signature of the memory management functions is based on the signature
universe@259 37 of the respective libc function but each of them takes the pointer to the
universe@259 38 memory area / pool as first argument.
universe@259 39
universe@259 40 As the pointer to the memory area / pool can be arbitrarily chosen, any data
universe@259 41 can be provided to the memory management functions. One example is the
universe@280 42 [UCX Memory Pool](#memory-pool).
universe@259 43
universe@259 44 ## AVL Tree
universe@259 45
universe@259 46 *Header file:* [avl.h](api/avl_8h.html)
universe@259 47 *Required modules:* [Allocator](#allocator)
universe@259 48
universe@259 49 This binary search tree implementation allows average O(1) insertion and
universe@259 50 removal of elements (excluding binary search time).
universe@259 51 All common binary tree operations are implemented. Furthermore, this module
universe@259 52 provides search functions via lower and upper bounds.
universe@259 53
universe@287 54 ### Filtering items with a time window
universe@287 55
universe@287 56 Suppose you have a list of items which contain a `time_t` value and your task
universe@287 57 is to find all items within a time window `[t_start, t_end]`.
universe@287 58 With AVL Trees this is easy:
universe@287 59 ```C
universe@287 60 /* ---------------------
universe@287 61 * Somewhere in a header
universe@287 62 */
universe@287 63 typedef struct {
universe@287 64 time_t ts;
universe@294 65 /* other important data */
universe@287 66 } MyObject;
universe@287 67
universe@287 68 /* -----------
universe@287 69 * Source code
universe@287 70 */
universe@287 71
universe@287 72 UcxAVLTree* tree = ucx_avl_new(ucx_longintcmp);
universe@294 73 /* ... populate tree with objects, use '& MyObject.ts' as key ... */
universe@287 74
universe@287 75
universe@294 76 /* Now find every item, with 30 <= ts <= 70 */
universe@287 77 time_t ts_start = 30;
universe@287 78 time_t ts_end = 70;
universe@287 79
universe@287 80 printf("Values in range:\n");
universe@287 81 for (
universe@287 82 UcxAVLNode* node = ucx_avl_find_node(
universe@287 83 tree, (intptr_t) &ts_start,
universe@287 84 ucx_longintdist, UCX_AVL_FIND_LOWER_BOUNDED);
universe@287 85 node && (*(time_t*)node->key) <= ts_end;
universe@287 86 node = ucx_avl_succ(node)
universe@287 87 ) {
universe@287 88 printf(" ts: %ld\n", ((MyObject*)node->value)->ts);
universe@287 89 }
universe@287 90
universe@287 91 ucx_avl_free_content(tree, free);
universe@287 92 ucx_avl_free(tree);
universe@287 93 ```
universe@287 94
universe@259 95 ## Buffer
universe@259 96
universe@259 97 *Header file:* [buffer.h](api/buffer_8h.html)
universe@259 98 *Required modules:* None.
universe@259 99
universe@259 100 Instances of this buffer implementation can be used to read from or to write to
universe@259 101 memory like you would do with a stream. This allows the use of
universe@282 102 `ucx_stream_copy()` from the [Utilities](#utilities) module to copy contents
universe@282 103 from one buffer to another or from file or network streams to the buffer and
universe@259 104 vice-versa.
universe@259 105
universe@259 106 More features for convenient use of the buffer can be enabled, like automatic
universe@259 107 memory management and automatic resizing of the buffer space.
universe@259 108 See the documentation of the macro constants in the header file for more
universe@259 109 information.
universe@259 110
universe@290 111 ### Add line numbers to a file
universe@290 112
universe@290 113 When reading a file line by line, you have three options: first, you could limit
universe@290 114 the maximum supported line length.
universe@290 115 Second, you allocate a god buffer large
universe@290 116 enough for the most lines a text file could have.
universe@290 117 And third, undoubtedly the best option, you start with a small buffer, which
universe@290 118 adjusts on demand.
universe@290 119 An `UcxBuffer` can be created to do just that for you.
universe@290 120 Just pass the `UCX_BUFFER_AUTOEXTEND` option to the initialization function.
universe@290 121 Here is a full working program, which adds line numbers to a file.
universe@290 122 ```C
universe@290 123 #include <stdio.h>
universe@290 124 #include <ucx/buffer.h>
universe@290 125 #include <ucx/utils.h>
universe@290 126
universe@290 127 int main(int argc, char** argv) {
universe@290 128
universe@290 129 if (argc != 2) {
universe@290 130 fprintf(stderr, "Usage: %s <file>\n", argv[0]);
universe@290 131 return 1;
universe@290 132 }
universe@290 133
universe@290 134 FILE* input = fopen(argv[1], "r");
universe@290 135 if (!input) {
universe@290 136 perror("Canno read input");
universe@290 137 return 1;
universe@290 138 }
universe@290 139
universe@290 140 const size_t chunksize = 256;
universe@290 141
universe@290 142 UcxBuffer* linebuf =
universe@290 143 ucx_buffer_new(
universe@294 144 NULL, /* the buffer should manage the memory area for us */
universe@294 145 2*chunksize, /* initial size should be twice the chunk size */
universe@294 146 UCX_BUFFER_AUTOEXTEND); /* the buffer will grow when necessary */
universe@290 147
universe@290 148 size_t lineno = 1;
universe@290 149 do {
universe@294 150 /* read line chunk */
universe@290 151 size_t read = ucx_stream_ncopy(
universe@290 152 input, linebuf, fread, ucx_buffer_write, chunksize);
universe@290 153 if (read == 0) break;
universe@290 154
universe@294 155 /* handle line endings */
universe@290 156 do {
universe@290 157 sstr_t bufstr = ucx_buffer_to_sstr(linebuf);
universe@290 158 sstr_t nl = sstrchr(bufstr, '\n');
universe@290 159 if (nl.length == 0) break;
universe@290 160
universe@290 161 size_t linelen = bufstr.length - nl.length;
universe@290 162 sstr_t linestr = sstrsubsl(bufstr, 0, linelen);
universe@290 163
universe@290 164 printf("%zu: %" PRIsstr "\n", lineno++, SFMT(linestr));
universe@290 165
universe@294 166 /* shift the buffer to the next line */
universe@290 167 ucx_buffer_shift_left(linebuf, linelen+1);
universe@290 168 } while(1);
universe@290 169
universe@290 170 } while(1);
universe@290 171
universe@294 172 /* print the 'noeol' line, if any */
universe@290 173 sstr_t lastline = ucx_buffer_to_sstr(linebuf);
universe@290 174 if (lastline.length > 0) {
universe@290 175 printf("%zu: %" PRIsstr, lineno, SFMT(lastline));
universe@290 176 }
universe@290 177
universe@290 178 fclose(input);
universe@290 179 ucx_buffer_free(linebuf);
universe@290 180
universe@290 181 return 0;
universe@290 182 }
universe@290 183 ```
universe@290 184
universe@259 185 ## List
universe@259 186
universe@259 187 *Header file:* [list.h](api/list_8h.html)
universe@259 188 *Required modules:* [Allocator](#allocator)
universe@259 189
universe@259 190 This module provides the data structure and several functions for a doubly
universe@259 191 linked list. Among the common operations like insert, remove, search and sort,
universe@259 192 we allow convenient iteration via a special `UCX_FOREACH` macro.
universe@259 193
universe@294 194 ### Remove duplicates from an array of strings
universe@294 195
universe@294 196 Assume you are given an array of `sstr_t` and want to create a list of these
universe@294 197 strings without duplicates.
universe@294 198 ```C
universe@294 199 #include <stdio.h>
universe@294 200 #include <ucx/list.h>
universe@294 201 #include <ucx/string.h>
universe@294 202 #include <ucx/utils.h>
universe@294 203
universe@294 204 UcxList* remove_duplicates(sstr_t* array, size_t arrlen) {
universe@294 205 UcxList* list = NULL;
universe@294 206 for (size_t i = 0 ; i < arrlen ; ++i) {
universe@294 207 if (ucx_list_find(list, array+i, ucx_sstrcmp, NULL) == -1) {
universe@294 208 sstr_t* s = malloc(sizeof(sstr_t));
universe@294 209 *s = sstrdup(array[i]);
universe@294 210 list = ucx_list_append(list, s);
universe@294 211 }
universe@294 212 }
universe@294 213 return list;
universe@294 214 }
universe@294 215
universe@294 216 /* we will need this function to clean up the list contents later */
universe@294 217 void free_sstr(void* ptr) {
universe@294 218 sstr_t* s = ptr;
universe@294 219 free(s->ptr);
universe@294 220 free(s);
universe@294 221 }
universe@294 222
universe@294 223 /* ... */
universe@294 224
universe@294 225 sstr_t* array = /* some array of strings */
universe@294 226 size_t arrlen = /* the length of the array */
universe@294 227
universe@294 228 UcxList* list = remove_duplicates(array,arrlen);
universe@294 229
universe@294 230 /* Iterate over the list and print the elements */
universe@294 231 UCX_FOREACH(elem, list) {
universe@294 232 sstr_t s = *((sstr_t*)elem->data);
universe@294 233 printf("%" PRIsstr "\n", SFMT(s));
universe@294 234 }
universe@294 235
universe@294 236 /* Use our free function to free the duplicated strings. */
universe@294 237 ucx_list_free_content(list, free_sstr);
universe@294 238 ucx_list_free(list);
universe@294 239 ```
universe@294 240
universe@259 241 ## Logging
universe@259 242
universe@259 243 *Header file:* [logging.h](api/logging_8h.html)
universe@259 244 *Required modules:* [Map](#map), [String](#string)
universe@259 245
universe@259 246 The logging module comes with some predefined log levels and allows some more
universe@259 247 customization. You may choose if you want to get timestamps or source file and
universe@259 248 line number logged automatically when outputting a message.
universe@259 249
universe@259 250
universe@259 251 ## Map
universe@259 252
universe@259 253 *Header file:* [map.h](api/map_8h.html)
universe@259 254 *Required modules:* [Allocator](#allocator), [String](#string)
universe@259 255
universe@259 256 This module provides a hash map implementation using murmur hash 2 and separate
universe@259 257 chaining with linked lists. Similarly to the list module, we provide a
universe@259 258 `UCX_MAP_FOREACH` macro to conveniently iterate through the key/value pairs.
universe@259 259
universe@259 260 ## Memory Pool
universe@259 261
universe@259 262 *Header file:* [mempool.h](api/mempool_8h.html)
universe@259 263 *Required modules:* [Allocator](#allocator)
universe@259 264
universe@259 265 Here we have a concrete allocator implementation in the sense of a memory pool.
universe@259 266 This pool allows you to register destructor functions for the allocated memory,
universe@259 267 which are automatically called on the destruction of the pool.
universe@259 268 But you may also register *independent* destructor functions within a pool in
universe@259 269 case, some external library allocated memory for you, which you wish to be
universe@259 270 destroyed together with this pool.
universe@259 271
universe@259 272 ## Properties
universe@259 273
universe@259 274 *Header file:* [properties.h](api/properties_8h.html)
universe@259 275 *Required modules:* [Map](#map)
universe@259 276
universe@259 277 This module provides load and store function for `*.properties` files.
universe@259 278 The key/value pairs are stored within an UCX Map.
universe@259 279
universe@277 280 ### Example: Loading properties from a file
universe@277 281
universe@277 282 ```C
universe@294 283 /* Open the file as usual */
universe@277 284 FILE* file = fopen("myprops.properties", "r");
universe@277 285 if (!file) {
universe@277 286 // error handling
universe@277 287 return 1;
universe@277 288 }
universe@277 289
universe@294 290 /* Load the properties from the file */
universe@277 291 UcxMap* myprops = ucx_map_new(16);
universe@277 292 if (ucx_properties_load(myprops, file)) {
universe@294 293 /* ... error handling ... */
universe@277 294 fclose(file);
universe@277 295 ucx_map_free(myprops);
universe@277 296 return 1;
universe@277 297 }
universe@277 298
universe@294 299 /* Print out the key/value pairs */
universe@277 300 char* propval;
universe@277 301 UcxMapIterator propiter = ucx_map_iterator(myprops);
universe@277 302 UCX_MAP_FOREACH(key, propval, propiter) {
universe@277 303 printf("%s = %s\n", (char*)key.data, propval);
universe@277 304 }
universe@277 305
universe@294 306 /* Don't forget to free the values before freeing the map */
universe@277 307 ucx_map_free_content(myprops, NULL);
universe@277 308 ucx_map_free(myprops);
universe@277 309 fclose(file);
universe@277 310 ```
universe@259 311 ## Stack
universe@259 312
universe@259 313 *Header file:* [stack.h](api/stack_8h.html)
universe@259 314 *Required modules:* [Allocator](#allocator)
universe@259 315
universe@259 316 This concrete implementation of an UCX Allocator allows you to grab some amount
universe@259 317 of memory which is then handled as a stack.
universe@259 318 Please note, that the term *stack* only refers to the behavior of this
universe@259 319 allocator. You may still choose if you want to use stack or heap memory
universe@259 320 for the underlying space.
universe@259 321
universe@259 322 A typical use case is an algorithm where you need to allocate and free large
universe@259 323 amounts of memory very frequently.
universe@259 324
universe@259 325 ## String
universe@259 326
universe@259 327 *Header file:* [string.h](api/string_8h.html)
universe@259 328 *Required modules:* [Allocator](#allocator)
universe@259 329
universe@259 330 This module provides a safe implementation of bounded string.
universe@259 331 Usually C strings do not carry a length. While for zero-terminated strings you
universe@259 332 can easily get the length with `strlen`, this is not generally possible for
universe@259 333 arbitrary strings.
universe@259 334 The `sstr_t` type of this module always carries the string and its length to
universe@259 335 reduce the risk of buffer overflows dramatically.
universe@259 336
universe@267 337 ### Initialization
universe@267 338
universe@267 339 There are several ways to create an `sstr_t`:
universe@267 340
universe@267 341 ```C
universe@267 342 /* (1) sstr() uses strlen() internally, hence cstr MUST be zero-terminated */
universe@267 343 sstr_t a = sstr(cstr);
universe@267 344
universe@267 345 /* (2) cstr does not need to be zero-terminated, if length is specified */
universe@267 346 sstr_t b = sstrn(cstr, len);
universe@267 347
universe@267 348 /* (3) S() macro creates sstr_t from a string using sizeof() and using sstrn().
universe@267 349 This version is especially useful for function arguments */
universe@267 350 sstr_t c = S("hello");
universe@267 351
universe@267 352 /* (4) ST() macro creates sstr_t struct literal using sizeof() */
universe@267 353 sstr_t d = ST("hello");
universe@267 354 ```
universe@267 355
universe@267 356 You should not use the `S()` or `ST()` macro with string of unknown origin,
universe@267 357 since the `sizeof()` call might not coincide with the string length in those
universe@267 358 cases. If you know what you are doing, it can save you some performance,
universe@267 359 because you do not need the `strlen()` call.
universe@267 360
universe@267 361 ### Finding the position of a substring
universe@267 362
universe@267 363 The `sstrstr()` function gives you a new `sstr_t` object starting with the
universe@267 364 requested substring. Thus determining the position comes down to a simple
universe@267 365 subtraction.
universe@267 366
universe@267 367 ```C
universe@267 368 sstr_t haystack = ST("Here we go!");
universe@267 369 sstr_t needle = ST("we");
universe@267 370 sstr_t result = sstrstr(haystack, needle);
universe@267 371 if (result.ptr)
universe@267 372 printf("Found at position %zd.\n", haystack.length-result.length);
universe@267 373 else
universe@267 374 printf("Not found.\n");
universe@267 375 ```
universe@267 376
universe@267 377 ### Spliting a string by a delimiter
universe@267 378
universe@267 379 The `sstrsplit()` function (and its allocator based version `sstrsplit_a()`) is
universe@267 380 very powerful and might look a bit nasty at a first glance. But it is indeed
universe@267 381 very simple to use. It is even more convenient in combination with a memory
universe@267 382 pool.
universe@267 383
universe@267 384 ```C
universe@267 385 sstr_t test = ST("here::are::some::strings");
universe@267 386 sstr_t delim = ST("::");
universe@267 387
universe@267 388 ssize_t count = 0; /* no limit */
universe@267 389 UcxMempool* pool = ucx_mempool_new_default();
universe@267 390
universe@267 391 sstr_t* result = sstrsplit_a(pool->allocator, test, delim, &count);
universe@267 392 for (ssize_t i = 0 ; i < count ; i++) {
universe@267 393 /* don't forget to specify the length via the %*s format specifier */
universe@267 394 printf("%*s\n", result[i].length, result[i].ptr);
universe@267 395 }
universe@267 396
universe@267 397 ucx_mempool_destroy(pool);
universe@267 398 ```
universe@267 399 The output is:
universe@267 400
universe@267 401 here
universe@267 402 are
universe@267 403 some
universe@267 404 strings
universe@267 405
universe@267 406 The memory pool ensures, that all strings are freed.
universe@267 407
universe@259 408 ## Testing
universe@259 409
universe@259 410 *Header file:* [test.h](api/test_8h.html)
universe@259 411 *Required modules:* None.
universe@259 412
universe@259 413 This module provides a testing framework which allows you to execute test cases
universe@259 414 within test suites.
universe@259 415 To avoid code duplication within tests, we also provide the possibility to
universe@259 416 define test subroutines.
universe@259 417
universe@259 418 ## Utilities
universe@259 419
universe@259 420 *Header file:* [utils.h](api/utils_8h.html)
universe@259 421 *Required modules:* [Allocator](#allocator), [String](#string)
universe@259 422
universe@259 423 In this module we provide very general utility function for copy and compare
universe@259 424 operations.
universe@259 425 We also provide several `printf` variants to conveniently print formatted data
universe@259 426 to streams or strings.
universe@259 427
universe@279 428 ### A simple copy program
universe@279 429
universe@279 430 The utilities package provides several stream copy functions.
universe@279 431 One of them has a very simple interface and can, for instance, be used to copy
universe@279 432 whole files in a single call.
universe@279 433 This is a minimal working example:
universe@279 434 ```C
universe@279 435 #include <stdio.h>
universe@279 436 #include <ucx/utils.h>
universe@279 437
universe@279 438 int main(int argc, char** argv) {
universe@279 439
universe@279 440 if (argc != 3) {
universe@279 441 fprintf(stderr, "Use %s <src> <dest>", argv[0]);
universe@279 442 return 1;
universe@279 443 }
universe@279 444
universe@294 445 FILE *srcf = fopen(argv[1], "r"); /* insert error handling on your own */
universe@279 446 FILE *destf = fopen(argv[2], "w");
universe@279 447
universe@279 448 size_t n = ucx_stream_copy(srcf, destf, fread, fwrite);
universe@279 449 printf("%zu bytes copied.\n", n);
universe@279 450
universe@279 451 fclose(srcf);
universe@279 452 fclose(destf);
universe@279 453
universe@279 454
universe@279 455 return 0;
universe@279 456 }
universe@279 457 ```
universe@279 458
universe@281 459 ### Automatic allocation for formatted strings
universe@279 460
universe@281 461 The UCX utility function `ucx_asprintf()` and it's convenient shortcut
universe@281 462 `ucx_sprintf` allow easy formatting of strings, without ever having to worry
universe@281 463 about the required space.
universe@281 464 ```C
universe@281 465 sstr_t mystring = ucx_sprintf("The answer is: %d!", 42);
universe@281 466 ```
universe@281 467 Still, you have to pass `mystring.ptr` to `free()` (or the free function of
universe@281 468 your allocator, if you use `ucx_asprintf`).
universe@281 469 If you don't have all the information ready to build your string, you can even
universe@281 470 use a [UcxBuffer](#buffer) as a target with the utility function
universe@281 471 `ucx_bprintf()`.
universe@281 472 ```C
universe@281 473 UcxBuffer* strbuffer = ucx_buffer_new(NULL, 512, UCX_BUFFER_AUTOEXTEND);
universe@281 474
universe@281 475 for (unsigned int i = 2 ; i < 100 ; i++) {
universe@281 476 ucx_bprintf(strbuffer, "Integer %d is %s\n",
universe@281 477 i, prime(i) ? "prime" : "not prime");
universe@281 478 }
universe@281 479
universe@294 480 /* print the result to stdout */
universe@281 481 printf("%s", (char*)strbuffer->space);
universe@281 482
universe@281 483 ucx_buffer_free(strbuffer);
universe@281 484 ```

mercurial