src/array_list.c

Wed, 25 Jan 2023 19:19:29 +0100

author
Mike Becker <universe@uap-core.de>
date
Wed, 25 Jan 2023 19:19:29 +0100
changeset 640
55cc3b373c5e
parent 638
eafb45eefc51
child 641
d402fead3386
permissions
-rw-r--r--

simplify list class - fixes #236

universe@606 1 /*
universe@606 2 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER.
universe@606 3 *
universe@606 4 * Copyright 2021 Mike Becker, Olaf Wintermann All rights reserved.
universe@606 5 *
universe@606 6 * Redistribution and use in source and binary forms, with or without
universe@606 7 * modification, are permitted provided that the following conditions are met:
universe@606 8 *
universe@606 9 * 1. Redistributions of source code must retain the above copyright
universe@606 10 * notice, this list of conditions and the following disclaimer.
universe@606 11 *
universe@606 12 * 2. Redistributions in binary form must reproduce the above copyright
universe@606 13 * notice, this list of conditions and the following disclaimer in the
universe@606 14 * documentation and/or other materials provided with the distribution.
universe@606 15 *
universe@606 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
universe@606 17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
universe@606 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
universe@606 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
universe@606 20 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
universe@606 21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
universe@606 22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
universe@606 23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
universe@606 24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
universe@606 25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
universe@606 26 * POSSIBILITY OF SUCH DAMAGE.
universe@606 27 */
universe@606 28
universe@606 29 #include "cx/array_list.h"
universe@610 30 #include <assert.h>
universe@610 31 #include <string.h>
universe@611 32 #include <stdint.h>
universe@606 33
universe@628 34 // LOW LEVEL ARRAY LIST FUNCTIONS
universe@607 35
universe@612 36 enum cx_array_copy_result cx_array_copy(
universe@610 37 void **target,
universe@610 38 size_t *size,
universe@610 39 size_t *capacity,
universe@610 40 size_t index,
universe@610 41 void const *src,
universe@610 42 size_t elem_size,
universe@610 43 size_t elem_count,
universe@610 44 struct cx_array_reallocator_s *reallocator
universe@610 45 ) {
universe@628 46 // assert pointers
universe@610 47 assert(target != NULL);
universe@610 48 assert(size != NULL);
universe@610 49 assert(src != NULL);
universe@607 50
universe@628 51 // determine capacity
universe@610 52 size_t cap = capacity == NULL ? *size : *capacity;
universe@610 53
universe@628 54 // check if resize is required
universe@627 55 size_t minsize = index + elem_count;
universe@627 56 size_t newsize = *size < minsize ? minsize : *size;
universe@610 57 bool needrealloc = newsize > cap;
universe@610 58
universe@628 59 // reallocate if possible
universe@610 60 if (needrealloc) {
universe@628 61 // a reallocator and a capacity variable must be available
universe@610 62 if (reallocator == NULL || capacity == NULL) {
universe@610 63 return CX_ARRAY_COPY_REALLOC_NOT_SUPPORTED;
universe@610 64 }
universe@610 65
universe@628 66 // check, if we need to repair the src pointer
universe@611 67 uintptr_t targetaddr = (uintptr_t) *target;
universe@611 68 uintptr_t srcaddr = (uintptr_t) src;
universe@611 69 bool repairsrc = targetaddr <= srcaddr
universe@611 70 && srcaddr < targetaddr + cap * elem_size;
universe@611 71
universe@628 72 // calculate new capacity (next number divisible by 16)
universe@625 73 cap = newsize - (newsize % 16) + 16;
universe@625 74 assert(cap > newsize);
universe@610 75
universe@628 76 // perform reallocation
universe@610 77 void *newmem = reallocator->realloc(
universe@610 78 *target, cap, elem_size, reallocator
universe@610 79 );
universe@610 80 if (newmem == NULL) {
universe@610 81 return CX_ARRAY_COPY_REALLOC_FAILED;
universe@610 82 }
universe@610 83
universe@628 84 // repair src pointer, if necessary
universe@611 85 if (repairsrc) {
universe@611 86 src = ((char *) newmem) + (srcaddr - targetaddr);
universe@611 87 }
universe@611 88
universe@628 89 // store new pointer and capacity
universe@610 90 *target = newmem;
universe@610 91 *capacity = cap;
universe@610 92 }
universe@610 93
universe@628 94 // determine target pointer
universe@610 95 char *start = *target;
universe@610 96 start += index * elem_size;
universe@610 97
universe@628 98 // copy elements and set new size
universe@611 99 memmove(start, src, elem_count * elem_size);
universe@610 100 *size = newsize;
universe@610 101
universe@628 102 // return successfully
universe@610 103 return CX_ARRAY_COPY_SUCCESS;
universe@610 104 }
universe@607 105
universe@623 106 #define CX_ARRAY_SWAP_SBO_SIZE 512
universe@623 107
universe@623 108 void cx_array_swap(
universe@623 109 void *arr,
universe@623 110 size_t elem_size,
universe@623 111 size_t idx1,
universe@623 112 size_t idx2
universe@623 113 ) {
universe@628 114 // short circuit
universe@623 115 if (idx1 == idx2) return;
universe@623 116
universe@623 117 char sbo_mem[CX_ARRAY_SWAP_SBO_SIZE];
universe@623 118 void *tmp;
universe@623 119
universe@628 120 // decide if we can use the local buffer
universe@623 121 if (elem_size > CX_ARRAY_SWAP_SBO_SIZE) {
universe@623 122 tmp = malloc(elem_size);
universe@628 123 // we don't want to enforce error handling
universe@623 124 if (tmp == NULL) abort();
universe@623 125 } else {
universe@623 126 tmp = sbo_mem;
universe@623 127 }
universe@623 128
universe@628 129 // calculate memory locations
universe@623 130 char *left = arr, *right = arr;
universe@623 131 left += idx1 * elem_size;
universe@623 132 right += idx2 * elem_size;
universe@623 133
universe@628 134 // three-way swap
universe@623 135 memcpy(tmp, left, elem_size);
universe@623 136 memcpy(left, right, elem_size);
universe@623 137 memcpy(right, tmp, elem_size);
universe@623 138
universe@628 139 // free dynamic memory, if it was needed
universe@623 140 if (tmp != sbo_mem) {
universe@623 141 free(tmp);
universe@623 142 }
universe@623 143 }
universe@623 144
universe@628 145 // HIGH LEVEL ARRAY LIST FUNCTIONS
universe@607 146
universe@607 147 typedef struct {
universe@607 148 struct cx_list_s base;
universe@607 149 void *data;
universe@610 150 struct cx_array_reallocator_s reallocator;
universe@607 151 } cx_array_list;
universe@607 152
universe@610 153 static void *cx_arl_realloc(
universe@610 154 void *array,
universe@610 155 size_t capacity,
universe@610 156 size_t elem_size,
universe@610 157 struct cx_array_reallocator_s *alloc
universe@610 158 ) {
universe@628 159 // retrieve the pointer to the list allocator
universe@610 160 CxAllocator const *al = alloc->ptr1;
universe@610 161
universe@628 162 // use the list allocator to reallocate the memory
universe@610 163 return cxRealloc(al, array, capacity * elem_size);
universe@610 164 }
universe@610 165
universe@607 166 static void cx_arl_destructor(struct cx_list_s *list) {
universe@610 167 cx_array_list *arl = (cx_array_list *) list;
universe@607 168 cxFree(list->allocator, arl->data);
universe@607 169 }
universe@607 170
universe@638 171 static size_t cx_arl_insert_array(
universe@629 172 struct cx_list_s *list,
universe@638 173 size_t index,
universe@629 174 void const *array,
universe@629 175 size_t n
universe@629 176 ) {
universe@638 177 // out of bounds and special case check
universe@638 178 if (index > list->size || n == 0) return 0;
universe@638 179
universe@638 180 // get a correctly typed pointer to the list
universe@629 181 cx_array_list *arl = (cx_array_list *) list;
universe@638 182
universe@638 183 // do we need to move some elements?
universe@638 184 if (index < list->size) {
universe@638 185 char const *first_to_move = (char const *) arl->data;
universe@638 186 first_to_move += index * list->itemsize;
universe@638 187 size_t elems_to_move = list->size - index;
universe@638 188 size_t start_of_moved = index + n;
universe@638 189
universe@638 190 if (CX_ARRAY_COPY_SUCCESS != cx_array_copy(
universe@638 191 &arl->data,
universe@638 192 &list->size,
universe@638 193 &list->capacity,
universe@638 194 start_of_moved,
universe@638 195 first_to_move,
universe@638 196 list->itemsize,
universe@638 197 elems_to_move,
universe@638 198 &arl->reallocator
universe@638 199 )) {
universe@638 200 // if moving existing elems is unsuccessful, abort
universe@638 201 return 0;
universe@638 202 }
universe@638 203 }
universe@638 204
universe@638 205 // note that if we had to move the elements, the following operation
universe@638 206 // is guaranteed to succeed, because we have the memory already allocated
universe@638 207 // therefore, it is impossible to leave this function with an invalid array
universe@638 208
universe@638 209 // place the new elements
universe@629 210 if (CX_ARRAY_COPY_SUCCESS == cx_array_copy(
universe@629 211 &arl->data,
universe@629 212 &list->size,
universe@629 213 &list->capacity,
universe@638 214 index,
universe@629 215 array,
universe@629 216 list->itemsize,
universe@629 217 n,
universe@629 218 &arl->reallocator
universe@629 219 )) {
universe@629 220 return n;
universe@629 221 } else {
universe@629 222 // array list implementation is "all or nothing"
universe@629 223 return 0;
universe@629 224 }
universe@629 225 }
universe@629 226
universe@607 227 static int cx_arl_insert_iter(
universe@630 228 struct cx_mut_iterator_s *iter,
universe@607 229 void const *elem,
universe@607 230 int prepend
universe@607 231 ) {
universe@619 232 struct cx_list_s *list = iter->src_handle;
universe@619 233 if (iter->index < list->size) {
universe@640 234 int result = 1 != cx_arl_insert_array(
universe@619 235 list,
universe@619 236 iter->index + 1 - prepend,
universe@640 237 elem,
universe@640 238 1
universe@619 239 );
universe@619 240 if (result == 0 && prepend != 0) {
universe@619 241 iter->index++;
universe@619 242 iter->elem_handle = ((char *) iter->elem_handle) + list->itemsize;
universe@619 243 }
universe@619 244 return result;
universe@619 245 } else {
universe@640 246 int result = 1 != cx_arl_insert_array(list, list->size, elem, 1);
universe@619 247 iter->index = list->size;
universe@619 248 return result;
universe@619 249 }
universe@607 250 }
universe@607 251
universe@607 252 static int cx_arl_remove(
universe@607 253 struct cx_list_s *list,
universe@607 254 size_t index
universe@607 255 ) {
universe@628 256 // out-of-bounds check
universe@613 257 if (index >= list->size) {
universe@613 258 return 1;
universe@613 259 }
universe@613 260
universe@628 261 // short-circuit removal of last element
universe@624 262 if (index == list->size - 1) {
universe@624 263 list->size--;
universe@624 264 return 0;
universe@624 265 }
universe@613 266
universe@628 267 // just move the elements starting at index to the left
universe@624 268 cx_array_list *arl = (cx_array_list *) list;
universe@613 269 int result = cx_array_copy(
universe@613 270 &arl->data,
universe@613 271 &list->size,
universe@613 272 &list->capacity,
universe@613 273 index,
universe@613 274 ((char *) arl->data) + (index + 1) * list->itemsize,
universe@613 275 list->itemsize,
universe@626 276 list->size - index - 1,
universe@613 277 &arl->reallocator
universe@613 278 );
universe@613 279 if (result == 0) {
universe@628 280 // decrease the size
universe@613 281 list->size--;
universe@613 282 }
universe@613 283 return result;
universe@607 284 }
universe@607 285
universe@610 286 static void *cx_arl_at(
universe@607 287 struct cx_list_s const *list,
universe@607 288 size_t index
universe@607 289 ) {
universe@610 290 if (index < list->size) {
universe@610 291 cx_array_list const *arl = (cx_array_list const *) list;
universe@610 292 char *space = arl->data;
universe@610 293 return space + index * list->itemsize;
universe@610 294 } else {
universe@610 295 return NULL;
universe@610 296 }
universe@607 297 }
universe@607 298
universe@607 299 static size_t cx_arl_find(
universe@607 300 struct cx_list_s const *list,
universe@607 301 void const *elem
universe@607 302 ) {
universe@614 303 char *cur = ((cx_array_list const *) list)->data;
universe@614 304
universe@614 305 for (size_t i = 0; i < list->size; i++) {
universe@614 306 if (0 == list->cmpfunc(elem, cur)) {
universe@614 307 return i;
universe@614 308 }
universe@614 309 cur += list->itemsize;
universe@614 310 }
universe@614 311
universe@614 312 return list->size;
universe@607 313 }
universe@607 314
universe@607 315 static void cx_arl_sort(struct cx_list_s *list) {
universe@615 316 qsort(((cx_array_list *) list)->data,
universe@615 317 list->size,
universe@615 318 list->itemsize,
universe@615 319 list->cmpfunc
universe@615 320 );
universe@607 321 }
universe@607 322
universe@607 323 static int cx_arl_compare(
universe@607 324 struct cx_list_s const *list,
universe@607 325 struct cx_list_s const *other
universe@607 326 ) {
universe@622 327 if (list->size == other->size) {
universe@622 328 char const *left = ((cx_array_list const *) list)->data;
universe@622 329 char const *right = ((cx_array_list const *) other)->data;
universe@622 330 for (size_t i = 0; i < list->size; i++) {
universe@622 331 int d = list->cmpfunc(left, right);
universe@622 332 if (d != 0) {
universe@622 333 return d;
universe@622 334 }
universe@622 335 left += list->itemsize;
universe@622 336 right += other->itemsize;
universe@622 337 }
universe@622 338 return 0;
universe@622 339 } else {
universe@622 340 return list->size < other->size ? -1 : 1;
universe@622 341 }
universe@607 342 }
universe@607 343
universe@607 344 static void cx_arl_reverse(struct cx_list_s *list) {
universe@623 345 if (list->size < 2) return;
universe@623 346 void *data = ((cx_array_list const *) list)->data;
universe@623 347 size_t half = list->size / 2;
universe@623 348 for (size_t i = 0; i < half; i++) {
universe@623 349 cx_array_swap(data, list->itemsize, i, list->size - 1 - i);
universe@623 350 }
universe@607 351 }
universe@607 352
universe@630 353 static bool cx_arl_iter_valid(void const *it) {
universe@630 354 struct cx_iterator_s const *iter = it;
universe@616 355 struct cx_list_s const *list = iter->src_handle;
universe@616 356 return iter->index < list->size;
universe@616 357 }
universe@616 358
universe@630 359 static void *cx_arl_iter_current(void const *it) {
universe@630 360 struct cx_iterator_s const *iter = it;
universe@616 361 return iter->elem_handle;
universe@616 362 }
universe@616 363
universe@630 364 static void cx_arl_iter_next(void *it) {
universe@630 365 struct cx_iterator_base_s *itbase = it;
universe@630 366 if (itbase->remove) {
universe@630 367 struct cx_mut_iterator_s *iter = it;
universe@630 368 itbase->remove = false;
universe@616 369 cx_arl_remove(iter->src_handle, iter->index);
universe@616 370 } else {
universe@630 371 struct cx_iterator_s *iter = it;
universe@616 372 iter->index++;
universe@620 373 iter->elem_handle =
universe@620 374 ((char *) iter->elem_handle)
universe@620 375 + ((struct cx_list_s const *) iter->src_handle)->itemsize;
universe@616 376 }
universe@616 377 }
universe@616 378
universe@630 379 static bool cx_arl_iter_flag_rm(void *it) {
universe@630 380 struct cx_iterator_base_s *iter = it;
universe@630 381 if (iter->mutating) {
universe@630 382 iter->remove = true;
universe@630 383 return true;
universe@630 384 } else {
universe@630 385 return false;
universe@630 386 }
universe@630 387 }
universe@630 388
universe@607 389 static struct cx_iterator_s cx_arl_iterator(
universe@630 390 struct cx_list_s const *list,
universe@607 391 size_t index
universe@607 392 ) {
universe@607 393 struct cx_iterator_s iter;
universe@607 394
universe@616 395 iter.index = index;
universe@616 396 iter.src_handle = list;
universe@616 397 iter.elem_handle = cx_arl_at(list, index);
universe@630 398 iter.base.valid = cx_arl_iter_valid;
universe@630 399 iter.base.current = cx_arl_iter_current;
universe@630 400 iter.base.next = cx_arl_iter_next;
universe@630 401 iter.base.flag_removal = cx_arl_iter_flag_rm;
universe@630 402 iter.base.remove = false;
universe@630 403 iter.base.mutating = false;
universe@616 404
universe@607 405 return iter;
universe@607 406 }
universe@607 407
universe@607 408 static cx_list_class cx_array_list_class = {
universe@607 409 cx_arl_destructor,
universe@638 410 cx_arl_insert_array,
universe@607 411 cx_arl_insert_iter,
universe@607 412 cx_arl_remove,
universe@607 413 cx_arl_at,
universe@607 414 cx_arl_find,
universe@607 415 cx_arl_sort,
universe@607 416 cx_arl_compare,
universe@607 417 cx_arl_reverse,
universe@607 418 cx_arl_iterator,
universe@607 419 };
universe@607 420
universe@606 421 CxList *cxArrayListCreate(
universe@606 422 CxAllocator const *allocator,
universe@606 423 CxListComparator comparator,
universe@606 424 size_t item_size,
universe@606 425 size_t initial_capacity
universe@606 426 ) {
universe@607 427 cx_array_list *list = cxCalloc(allocator, 1, sizeof(cx_array_list));
universe@607 428 if (list == NULL) return NULL;
universe@607 429
universe@607 430 list->data = cxCalloc(allocator, initial_capacity, item_size);
universe@607 431 if (list->data == NULL) {
universe@607 432 cxFree(allocator, list);
universe@607 433 return NULL;
universe@607 434 }
universe@607 435
universe@607 436 list->base.cl = &cx_array_list_class;
universe@607 437 list->base.allocator = allocator;
universe@607 438 list->base.cmpfunc = comparator;
universe@607 439 list->base.itemsize = item_size;
universe@607 440 list->base.capacity = initial_capacity;
universe@607 441
universe@628 442 // configure the reallocator
universe@610 443 list->reallocator.realloc = cx_arl_realloc;
universe@610 444 list->reallocator.ptr1 = (void *) allocator;
universe@610 445
universe@607 446 return (CxList *) list;
universe@606 447 }

mercurial