universe@192: /* universe@192: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER. universe@192: * universe@192: * Copyright 2015 Olaf Wintermann. All rights reserved. universe@192: * universe@192: * Redistribution and use in source and binary forms, with or without universe@192: * modification, are permitted provided that the following conditions are met: universe@192: * universe@192: * 1. Redistributions of source code must retain the above copyright universe@192: * notice, this list of conditions and the following disclaimer. universe@192: * universe@192: * 2. Redistributions in binary form must reproduce the above copyright universe@192: * notice, this list of conditions and the following disclaimer in the universe@192: * documentation and/or other materials provided with the distribution. universe@192: * universe@192: * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" universe@192: * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE universe@192: * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE universe@192: * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE universe@192: * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR universe@192: * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF universe@192: * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS universe@192: * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN universe@192: * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) universe@192: * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE universe@192: * POSSIBILITY OF SUCH DAMAGE. universe@192: */ universe@192: universe@192: #include "avl.h" universe@192: universe@195: #define ptrcast(ptr) ((void*)(ptr)) universe@216: #define alloc_tree(al) (UcxAVLTree*) almalloc((al), sizeof(UcxAVLTree)) universe@216: #define alloc_node(al) (UcxAVLNode*) almalloc((al), sizeof(UcxAVLNode)) universe@195: universe@195: static void ucx_avl_connect(UcxAVLTree *tree, universe@195: UcxAVLNode *node, UcxAVLNode *child, intptr_t nullkey) { universe@195: if (child) { universe@195: child->parent = node; universe@195: } universe@195: // if child is NULL, nullkey decides if left or right pointer is cleared universe@195: if (tree->cmpfunc( universe@195: ptrcast(child ? child->key : nullkey), universe@195: ptrcast(node->key), tree->userdata) > 0) { universe@195: node->right = child; universe@195: } else { universe@195: node->left = child; universe@195: } universe@195: size_t lh = node->left ? node->left->height : 0; universe@195: size_t rh = node->right ? node->right->height : 0; universe@195: node->height = 1 + (lh > rh ? lh : rh); universe@195: } universe@195: universe@195: #define avlheight(node) ((node) ? (node)->height : 0) universe@195: universe@195: static UcxAVLNode* avl_rotright(UcxAVLTree *tree, UcxAVLNode *l0) { universe@195: UcxAVLNode *p = l0->parent; universe@195: UcxAVLNode *l1 = l0->left; universe@195: if (p) { universe@195: ucx_avl_connect(tree, p, l1, 0); universe@195: } else { universe@195: l1->parent = NULL; universe@195: } universe@195: ucx_avl_connect(tree, l0, l1->right, l1->key); universe@195: ucx_avl_connect(tree, l1, l0, 0); universe@195: return l1; universe@195: } universe@195: universe@195: static UcxAVLNode* avl_rotleft(UcxAVLTree *tree, UcxAVLNode *l0) { universe@195: UcxAVLNode *p = l0->parent; universe@195: UcxAVLNode *l1 = l0->right; universe@195: if (p) { universe@195: ucx_avl_connect(tree, p, l1, 0); universe@195: } else { universe@195: l1->parent = NULL; universe@195: } universe@195: ucx_avl_connect(tree, l0, l1->left, l1->key); universe@195: ucx_avl_connect(tree, l1, l0, 0); universe@195: return l1; universe@195: } universe@195: universe@195: static void ucx_avl_balance(UcxAVLTree *tree, UcxAVLNode *n) { universe@195: int lh = avlheight(n->left); universe@195: int rh = avlheight(n->right); universe@195: n->height = 1 + (lh > rh ? lh : rh); universe@195: universe@195: if (lh - rh == 2) { universe@195: UcxAVLNode *c = n->left; universe@195: if (avlheight(c->right) - avlheight(c->left) == 1) { universe@195: avl_rotleft(tree, c); universe@195: } universe@195: n = avl_rotright(tree, n); universe@195: } else if (rh - lh == 2) { universe@195: UcxAVLNode *c = n->right; universe@195: if (avlheight(c->left) - avlheight(c->right) == 1) { universe@195: avl_rotright(tree, c); universe@195: } universe@195: n = avl_rotleft(tree, n); universe@195: } universe@195: universe@195: if (n->parent) { universe@195: ucx_avl_balance(tree, n->parent); universe@195: } else { universe@195: tree->root = n; universe@195: } universe@195: } universe@195: universe@194: UcxAVLTree *ucx_avl_new(cmp_func cmpfunc) { universe@194: return ucx_avl_new_a(cmpfunc, ucx_default_allocator()); universe@194: } universe@194: universe@194: UcxAVLTree *ucx_avl_new_a(cmp_func cmpfunc, UcxAllocator *allocator) { universe@216: UcxAVLTree* tree = alloc_tree(allocator); universe@194: if (tree) { universe@194: tree->allocator = allocator; universe@194: tree->cmpfunc = cmpfunc; universe@194: tree->root = NULL; universe@194: tree->userdata = NULL; universe@194: } universe@194: universe@194: return tree; universe@194: } universe@194: universe@196: static void ucx_avl_free_node(UcxAllocator *al, UcxAVLNode *node) { universe@196: if (node) { universe@196: ucx_avl_free_node(al, node->left); universe@196: ucx_avl_free_node(al, node->right); universe@196: alfree(al, node); universe@196: } universe@196: } universe@196: universe@196: void ucx_avl_free(UcxAVLTree *tree) { universe@196: UcxAllocator *al = tree->allocator; universe@196: ucx_avl_free_node(al, tree->root); universe@196: alfree(al, tree); universe@196: } universe@196: universe@205: UcxAVLNode *ucx_avl_get_node(UcxAVLTree *tree, intptr_t key) { universe@195: UcxAVLNode *n = tree->root; universe@195: int cmpresult; universe@195: while (n && (cmpresult = tree->cmpfunc( universe@195: ptrcast(key), ptrcast(n->key), tree->userdata))) { universe@195: n = cmpresult > 0 ? n->right : n->left; universe@195: } universe@204: return n; universe@204: } universe@204: universe@204: void *ucx_avl_get(UcxAVLTree *tree, intptr_t key) { universe@205: UcxAVLNode *n = ucx_avl_get_node(tree, key); universe@195: return n ? n->value : NULL; universe@194: } universe@194: universe@204: int ucx_avl_put(UcxAVLTree *tree, intptr_t key, void *value) { universe@204: return ucx_avl_put_s(tree, key, value, NULL); universe@204: } universe@204: universe@204: int ucx_avl_put_s(UcxAVLTree *tree, intptr_t key, void *value, universe@204: void **oldvalue) { universe@195: if (tree->root) { universe@195: UcxAVLNode *n = tree->root; universe@195: int cmpresult; universe@197: while ((cmpresult = tree->cmpfunc( universe@197: ptrcast(key), ptrcast(n->key), tree->userdata))) { universe@195: UcxAVLNode *m = cmpresult > 0 ? n->right : n->left; universe@195: if (m) { universe@195: n = m; universe@195: } else { universe@195: break; universe@195: } universe@195: } universe@195: universe@195: if (cmpresult) { universe@216: UcxAVLNode* e = alloc_node(tree->allocator); universe@204: if (e) { universe@204: e->key = key; e->value = value; e->height = 1; universe@204: e->parent = e->left = e->right = NULL; universe@204: ucx_avl_connect(tree, n, e, 0); universe@204: ucx_avl_balance(tree, n); universe@204: return 0; universe@204: } else { universe@204: return 1; universe@204: } universe@195: } else { universe@204: if (oldvalue) { universe@204: *oldvalue = n->value; universe@204: } universe@195: n->value = value; universe@204: return 0; universe@195: } universe@195: } else { universe@216: tree->root = alloc_node(tree->allocator); universe@204: if (tree->root) { universe@204: tree->root->key = key; tree->root->value = value; universe@204: tree->root->height = 1; universe@204: tree->root->parent = tree->root->left = tree->root->right = NULL; universe@204: universe@204: if (oldvalue) { universe@204: *oldvalue = NULL; universe@204: } universe@204: universe@204: return 0; universe@204: } else { universe@204: return 1; universe@204: } universe@195: } universe@194: } universe@194: universe@204: int ucx_avl_remove(UcxAVLTree *tree, intptr_t key) { universe@204: return ucx_avl_remove_s(tree, key, NULL, NULL); universe@204: } universe@204: universe@205: int ucx_avl_remove_node(UcxAVLTree *tree, UcxAVLNode *node) { universe@204: return ucx_avl_remove_s(tree, node->key, NULL, NULL); universe@204: } universe@204: universe@204: int ucx_avl_remove_s(UcxAVLTree *tree, intptr_t key, universe@204: intptr_t *oldkey, void **oldvalue) { universe@204: universe@195: UcxAVLNode *n = tree->root; universe@195: int cmpresult; universe@195: while (n && (cmpresult = tree->cmpfunc( universe@195: ptrcast(key), ptrcast(n->key), tree->userdata))) { universe@195: n = cmpresult > 0 ? n->right : n->left; universe@195: } universe@195: if (n) { universe@204: if (oldkey) { universe@204: *oldkey = n->key; universe@204: } universe@204: if (oldvalue) { universe@204: *oldvalue = n->value; universe@204: } universe@204: universe@195: UcxAVLNode *p = n->parent; universe@195: if (n->left && n->right) { universe@195: UcxAVLNode *s = n->right; universe@195: while (s->left) { universe@195: s = s->left; universe@195: } universe@195: ucx_avl_connect(tree, s->parent, s->right, s->key); universe@195: n->key = s->key; n->value = s->value; universe@195: p = s->parent; universe@196: alfree(tree->allocator, s); universe@195: } else { universe@195: if (p) { universe@195: ucx_avl_connect(tree, p, n->right ? n->right:n->left, n->key); universe@195: } else { universe@195: tree->root = n->right ? n->right : n->left; olaf@203: if (tree->root) { olaf@202: tree->root->parent = NULL; olaf@202: } universe@195: } universe@196: alfree(tree->allocator, n); universe@195: } universe@195: universe@195: if (p) { universe@195: ucx_avl_balance(tree, p); universe@195: } universe@204: universe@204: return 0; universe@195: } else { universe@204: return 1; universe@195: } universe@194: } universe@194: universe@199: static size_t ucx_avl_countn(UcxAVLNode *node) { universe@199: if (node) { universe@199: return 1 + ucx_avl_countn(node->left) + ucx_avl_countn(node->right); universe@199: } else { universe@199: return 0; universe@199: } universe@199: } universe@199: universe@199: size_t ucx_avl_count(UcxAVLTree *tree) { universe@199: return ucx_avl_countn(tree->root); universe@199: }