src/array_list.c

Tue, 14 Mar 2023 20:25:24 +0100

author
Mike Becker <universe@uap-core.de>
date
Tue, 14 Mar 2023 20:25:24 +0100
changeset 664
af5bf4603a5d
parent 662
d0d95740071b
child 666
b5dd654deb3b
permissions
-rw-r--r--

add cxListClear and fix missing destructor invocations - #241 #246

     1 /*
     2  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER.
     3  *
     4  * Copyright 2021 Mike Becker, Olaf Wintermann All rights reserved.
     5  *
     6  * Redistribution and use in source and binary forms, with or without
     7  * modification, are permitted provided that the following conditions are met:
     8  *
     9  *   1. Redistributions of source code must retain the above copyright
    10  *      notice, this list of conditions and the following disclaimer.
    11  *
    12  *   2. Redistributions in binary form must reproduce the above copyright
    13  *      notice, this list of conditions and the following disclaimer in the
    14  *      documentation and/or other materials provided with the distribution.
    15  *
    16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
    17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    19  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
    20  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    26  * POSSIBILITY OF SUCH DAMAGE.
    27  */
    29 #include "cx/array_list.h"
    30 #include <assert.h>
    31 #include <string.h>
    33 // LOW LEVEL ARRAY LIST FUNCTIONS
    35 enum cx_array_copy_result cx_array_copy(
    36         void **target,
    37         size_t *size,
    38         size_t *capacity,
    39         size_t index,
    40         void const *src,
    41         size_t elem_size,
    42         size_t elem_count,
    43         struct cx_array_reallocator_s *reallocator
    44 ) {
    45     // assert pointers
    46     assert(target != NULL);
    47     assert(size != NULL);
    48     assert(src != NULL);
    50     // determine capacity
    51     size_t cap = capacity == NULL ? *size : *capacity;
    53     // check if resize is required
    54     size_t minsize = index + elem_count;
    55     size_t newsize = *size < minsize ? minsize : *size;
    56     bool needrealloc = newsize > cap;
    58     // reallocate if possible
    59     if (needrealloc) {
    60         // a reallocator and a capacity variable must be available
    61         if (reallocator == NULL || capacity == NULL) {
    62             return CX_ARRAY_COPY_REALLOC_NOT_SUPPORTED;
    63         }
    65         // check, if we need to repair the src pointer
    66         uintptr_t targetaddr = (uintptr_t) *target;
    67         uintptr_t srcaddr = (uintptr_t) src;
    68         bool repairsrc = targetaddr <= srcaddr
    69                          && srcaddr < targetaddr + cap * elem_size;
    71         // calculate new capacity (next number divisible by 16)
    72         cap = newsize - (newsize % 16) + 16;
    73         assert(cap > newsize);
    75         // perform reallocation
    76         void *newmem = reallocator->realloc(
    77                 *target, cap, elem_size, reallocator
    78         );
    79         if (newmem == NULL) {
    80             return CX_ARRAY_COPY_REALLOC_FAILED;
    81         }
    83         // repair src pointer, if necessary
    84         if (repairsrc) {
    85             src = ((char *) newmem) + (srcaddr - targetaddr);
    86         }
    88         // store new pointer and capacity
    89         *target = newmem;
    90         *capacity = cap;
    91     }
    93     // determine target pointer
    94     char *start = *target;
    95     start += index * elem_size;
    97     // copy elements and set new size
    98     memmove(start, src, elem_count * elem_size);
    99     *size = newsize;
   101     // return successfully
   102     return CX_ARRAY_COPY_SUCCESS;
   103 }
   105 #ifndef CX_ARRAY_SWAP_SBO_SIZE
   106 #define CX_ARRAY_SWAP_SBO_SIZE 512
   107 #endif
   109 void cx_array_swap(
   110         void *arr,
   111         size_t elem_size,
   112         size_t idx1,
   113         size_t idx2
   114 ) {
   115     assert(arr != NULL);
   117     // short circuit
   118     if (idx1 == idx2) return;
   120     char sbo_mem[CX_ARRAY_SWAP_SBO_SIZE];
   121     void *tmp;
   123     // decide if we can use the local buffer
   124     if (elem_size > CX_ARRAY_SWAP_SBO_SIZE) {
   125         tmp = malloc(elem_size);
   126         // we don't want to enforce error handling
   127         if (tmp == NULL) abort();
   128     } else {
   129         tmp = sbo_mem;
   130     }
   132     // calculate memory locations
   133     char *left = arr, *right = arr;
   134     left += idx1 * elem_size;
   135     right += idx2 * elem_size;
   137     // three-way swap
   138     memcpy(tmp, left, elem_size);
   139     memcpy(left, right, elem_size);
   140     memcpy(right, tmp, elem_size);
   142     // free dynamic memory, if it was needed
   143     if (tmp != sbo_mem) {
   144         free(tmp);
   145     }
   146 }
   148 // HIGH LEVEL ARRAY LIST FUNCTIONS
   150 typedef struct {
   151     struct cx_list_s base;
   152     void *data;
   153     struct cx_array_reallocator_s reallocator;
   154 } cx_array_list;
   156 static void *cx_arl_realloc(
   157         void *array,
   158         size_t capacity,
   159         size_t elem_size,
   160         struct cx_array_reallocator_s *alloc
   161 ) {
   162     // retrieve the pointer to the list allocator
   163     CxAllocator const *al = alloc->ptr1;
   165     // use the list allocator to reallocate the memory
   166     return cxRealloc(al, array, capacity * elem_size);
   167 }
   169 static void cx_arl_destructor(struct cx_list_s *list) {
   170     cx_array_list *arl = (cx_array_list *) list;
   171     cxFree(list->allocator, arl->data);
   172 }
   174 static size_t cx_arl_insert_array(
   175         struct cx_list_s *list,
   176         size_t index,
   177         void const *array,
   178         size_t n
   179 ) {
   180     // out of bounds and special case check
   181     if (index > list->size || n == 0) return 0;
   183     // get a correctly typed pointer to the list
   184     cx_array_list *arl = (cx_array_list *) list;
   186     // do we need to move some elements?
   187     if (index < list->size) {
   188         char const *first_to_move = (char const *) arl->data;
   189         first_to_move += index * list->itemsize;
   190         size_t elems_to_move = list->size - index;
   191         size_t start_of_moved = index + n;
   193         if (CX_ARRAY_COPY_SUCCESS != cx_array_copy(
   194                 &arl->data,
   195                 &list->size,
   196                 &list->capacity,
   197                 start_of_moved,
   198                 first_to_move,
   199                 list->itemsize,
   200                 elems_to_move,
   201                 &arl->reallocator
   202         )) {
   203             // if moving existing elems is unsuccessful, abort
   204             return 0;
   205         }
   206     }
   208     // note that if we had to move the elements, the following operation
   209     // is guaranteed to succeed, because we have the memory already allocated
   210     // therefore, it is impossible to leave this function with an invalid array
   212     // place the new elements
   213     if (CX_ARRAY_COPY_SUCCESS == cx_array_copy(
   214             &arl->data,
   215             &list->size,
   216             &list->capacity,
   217             index,
   218             array,
   219             list->itemsize,
   220             n,
   221             &arl->reallocator
   222     )) {
   223         return n;
   224     } else {
   225         // array list implementation is "all or nothing"
   226         return 0;
   227     }
   228 }
   230 static int cx_arl_insert_element(
   231         struct cx_list_s *list,
   232         size_t index,
   233         void const *element
   234 ) {
   235     return 1 != cx_arl_insert_array(list, index, element, 1);
   236 }
   238 static int cx_arl_insert_iter(
   239         struct cx_mut_iterator_s *iter,
   240         void const *elem,
   241         int prepend
   242 ) {
   243     struct cx_list_s *list = iter->src_handle;
   244     if (iter->index < list->size) {
   245         int result = cx_arl_insert_element(
   246                 list,
   247                 iter->index + 1 - prepend,
   248                 elem
   249         );
   250         if (result == 0 && prepend != 0) {
   251             iter->index++;
   252             iter->elem_handle = ((char *) iter->elem_handle) + list->itemsize;
   253         }
   254         return result;
   255     } else {
   256         int result = cx_arl_insert_element(list, list->size, elem);
   257         iter->index = list->size;
   258         return result;
   259     }
   260 }
   262 static int cx_arl_remove(
   263         struct cx_list_s *list,
   264         size_t index
   265 ) {
   266     cx_array_list *arl = (cx_array_list *) list;
   268     // out-of-bounds check
   269     if (index >= list->size) {
   270         return 1;
   271     }
   273     // content destruction
   274     if (list->content_destructor_type != CX_DESTRUCTOR_NONE) {
   275         char *ptr = arl->data;
   276         ptr += index * list->itemsize;
   277         cx_list_invoke_destructor(list, ptr);
   278     }
   280     // short-circuit removal of last element
   281     if (index == list->size - 1) {
   282         list->size--;
   283         return 0;
   284     }
   286     // just move the elements starting at index to the left
   287     int result = cx_array_copy(
   288             &arl->data,
   289             &list->size,
   290             &list->capacity,
   291             index,
   292             ((char *) arl->data) + (index + 1) * list->itemsize,
   293             list->itemsize,
   294             list->size - index - 1,
   295             &arl->reallocator
   296     );
   297     if (result == 0) {
   298         // decrease the size
   299         list->size--;
   300     }
   301     return result;
   302 }
   304 static void cx_arl_clear(struct cx_list_s *list) {
   305     if (list->size == 0) return;
   307     cx_array_list *arl = (cx_array_list *) list;
   308     char *ptr = arl->data;
   310     switch (list->content_destructor_type) {
   311         case CX_DESTRUCTOR_SIMPLE: {
   312             for (size_t i = 0; i < list->size; i++) {
   313                 list->simple_destructor(ptr);
   314                 ptr += list->itemsize;
   315             }
   316             break;
   317         }
   318         case CX_DESTRUCTOR_ADVANCED: {
   319             for (size_t i = 0; i < list->size; i++) {
   320                 list->advanced_destructor.func(list->advanced_destructor.data,
   321                                                ptr);
   322                 ptr += list->itemsize;
   323             }
   324             break;
   325         }
   326         case CX_DESTRUCTOR_NONE:
   327             break; // nothing
   328     }
   329 }
   331 static int cx_arl_swap(
   332         struct cx_list_s *list,
   333         size_t i,
   334         size_t j
   335 ) {
   336     if (i >= list->size || j >= list->size) return 1;
   337     cx_array_list *arl = (cx_array_list *) list;
   338     cx_array_swap(arl->data, list->itemsize, i, j);
   339     return 0;
   340 }
   342 static void *cx_arl_at(
   343         struct cx_list_s const *list,
   344         size_t index
   345 ) {
   346     if (index < list->size) {
   347         cx_array_list const *arl = (cx_array_list const *) list;
   348         char *space = arl->data;
   349         return space + index * list->itemsize;
   350     } else {
   351         return NULL;
   352     }
   353 }
   355 static size_t cx_arl_find(
   356         struct cx_list_s const *list,
   357         void const *elem
   358 ) {
   359     assert(list->cmpfunc != NULL);
   360     char *cur = ((cx_array_list const *) list)->data;
   362     for (size_t i = 0; i < list->size; i++) {
   363         if (0 == list->cmpfunc(elem, cur)) {
   364             return i;
   365         }
   366         cur += list->itemsize;
   367     }
   369     return list->size;
   370 }
   372 static void cx_arl_sort(struct cx_list_s *list) {
   373     assert(list->cmpfunc != NULL);
   374     qsort(((cx_array_list *) list)->data,
   375           list->size,
   376           list->itemsize,
   377           list->cmpfunc
   378     );
   379 }
   381 static int cx_arl_compare(
   382         struct cx_list_s const *list,
   383         struct cx_list_s const *other
   384 ) {
   385     assert(list->cmpfunc != NULL);
   386     if (list->size == other->size) {
   387         char const *left = ((cx_array_list const *) list)->data;
   388         char const *right = ((cx_array_list const *) other)->data;
   389         for (size_t i = 0; i < list->size; i++) {
   390             int d = list->cmpfunc(left, right);
   391             if (d != 0) {
   392                 return d;
   393             }
   394             left += list->itemsize;
   395             right += other->itemsize;
   396         }
   397         return 0;
   398     } else {
   399         return list->size < other->size ? -1 : 1;
   400     }
   401 }
   403 static void cx_arl_reverse(struct cx_list_s *list) {
   404     if (list->size < 2) return;
   405     void *data = ((cx_array_list const *) list)->data;
   406     size_t half = list->size / 2;
   407     for (size_t i = 0; i < half; i++) {
   408         cx_array_swap(data, list->itemsize, i, list->size - 1 - i);
   409     }
   410 }
   412 static bool cx_arl_iter_valid(void const *it) {
   413     struct cx_iterator_s const *iter = it;
   414     struct cx_list_s const *list = iter->src_handle;
   415     return iter->index < list->size;
   416 }
   418 static void *cx_arl_iter_current(void const *it) {
   419     struct cx_iterator_s const *iter = it;
   420     return iter->elem_handle;
   421 }
   423 static void cx_arl_iter_next(void *it) {
   424     struct cx_iterator_base_s *itbase = it;
   425     if (itbase->remove) {
   426         struct cx_mut_iterator_s *iter = it;
   427         itbase->remove = false;
   428         cx_arl_remove(iter->src_handle, iter->index);
   429     } else {
   430         struct cx_iterator_s *iter = it;
   431         iter->index++;
   432         iter->elem_handle =
   433                 ((char *) iter->elem_handle)
   434                 + ((struct cx_list_s const *) iter->src_handle)->itemsize;
   435     }
   436 }
   438 static void cx_arl_iter_prev(void *it) {
   439     struct cx_iterator_base_s *itbase = it;
   440     struct cx_mut_iterator_s *iter = it;
   441     cx_array_list *const list = iter->src_handle;
   442     if (itbase->remove) {
   443         itbase->remove = false;
   444         cx_arl_remove(iter->src_handle, iter->index);
   445     }
   446     iter->index--;
   447     if (iter->index < list->base.size) {
   448         iter->elem_handle = ((char *) list->data)
   449                             + iter->index * list->base.itemsize;
   450     }
   451 }
   453 static bool cx_arl_iter_flag_rm(void *it) {
   454     struct cx_iterator_base_s *iter = it;
   455     if (iter->mutating) {
   456         iter->remove = true;
   457         return true;
   458     } else {
   459         return false;
   460     }
   461 }
   463 static struct cx_iterator_s cx_arl_iterator(
   464         struct cx_list_s const *list,
   465         size_t index,
   466         bool backwards
   467 ) {
   468     struct cx_iterator_s iter;
   470     iter.index = index;
   471     iter.src_handle = list;
   472     iter.elem_handle = cx_arl_at(list, index);
   473     iter.base.valid = cx_arl_iter_valid;
   474     iter.base.current = cx_arl_iter_current;
   475     iter.base.next = backwards ? cx_arl_iter_prev : cx_arl_iter_next;
   476     iter.base.flag_removal = cx_arl_iter_flag_rm;
   477     iter.base.remove = false;
   478     iter.base.mutating = false;
   480     return iter;
   481 }
   483 static cx_list_class cx_array_list_class = {
   484         cx_arl_destructor,
   485         cx_arl_insert_element,
   486         cx_arl_insert_array,
   487         cx_arl_insert_iter,
   488         cx_arl_remove,
   489         cx_arl_clear,
   490         cx_arl_swap,
   491         cx_arl_at,
   492         cx_arl_find,
   493         cx_arl_sort,
   494         cx_arl_compare,
   495         cx_arl_reverse,
   496         cx_arl_iterator,
   497 };
   499 static CxList *cx_array_list_create(
   500         CxAllocator const *allocator,
   501         CxListComparator comparator,
   502         size_t item_size,
   503         size_t initial_capacity
   504 ) {
   505     cx_array_list *list = cxCalloc(allocator, 1, sizeof(cx_array_list));
   506     if (list == NULL) return NULL;
   508     list->data = cxCalloc(allocator, initial_capacity, item_size);
   509     if (list->data == NULL) {
   510         cxFree(allocator, list);
   511         return NULL;
   512     }
   514     list->base.cl = &cx_array_list_class;
   515     list->base.allocator = allocator;
   516     list->base.cmpfunc = comparator;
   517     list->base.itemsize = item_size;
   518     list->base.capacity = initial_capacity;
   520     // configure the reallocator
   521     list->reallocator.realloc = cx_arl_realloc;
   522     list->reallocator.ptr1 = (void *) allocator;
   524     return (CxList *) list;
   525 }
   527 CxList *cxArrayListCreate(
   528         CxAllocator const *allocator,
   529         CxListComparator comparator,
   530         size_t item_size,
   531         size_t initial_capacity
   532 ) {
   533     return cx_array_list_create(allocator, comparator,
   534                                 item_size, initial_capacity);
   535 }
   537 CxList *cxArrayListCreateSimple(
   538         size_t item_size,
   539         size_t initial_capacity
   540 ) {
   541     return cx_array_list_create(cxDefaultAllocator, NULL,
   542                                 item_size, initial_capacity);
   543 }

mercurial