Sun, 09 Jul 2023 12:33:20 +0200
update CHANGELOG, COPYING, and README
/* * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER. * * Copyright 2021 Mike Becker, Olaf Wintermann All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include "cx/buffer.h" #include <gtest/gtest.h> #include "util_allocator.h" class BufferFixture : public ::testing::Test { protected: void SetUp() override { cxBufferInit(&buf, nullptr, 16, cxDefaultAllocator, CX_BUFFER_DEFAULT); buf.size = 6; buf.pos = 3; } void TearDown() override { cxBufferDestroy(&buf); } CxBuffer buf{}; }; static void expect_default_flush_config(CxBuffer *buf) { EXPECT_EQ(buf->flush_blkmax, 0); EXPECT_EQ(buf->flush_blksize, 4096); EXPECT_EQ(buf->flush_threshold, SIZE_MAX); EXPECT_EQ(buf->flush_func, nullptr); EXPECT_EQ(buf->flush_target, nullptr); } TEST(BufferInit, WrapSpace) { CxTestingAllocator alloc; CxBuffer buf; void *space = cxMalloc(&alloc, 16); cxBufferInit(&buf, space, 16, &alloc, CX_BUFFER_DEFAULT); expect_default_flush_config(&buf); EXPECT_EQ(buf.space, space); EXPECT_EQ(buf.flags & CX_BUFFER_AUTO_EXTEND, 0); EXPECT_EQ(buf.flags & CX_BUFFER_FREE_CONTENTS, 0); EXPECT_EQ(buf.pos, 0); EXPECT_EQ(buf.size, 0); EXPECT_EQ(buf.capacity, 16); EXPECT_EQ(buf.allocator, &alloc); cxBufferDestroy(&buf); EXPECT_FALSE(alloc.verify()); cxFree(&alloc, space); EXPECT_TRUE(alloc.verify()); } TEST(BufferInit, WrapSpaceAutoExtend) { CxTestingAllocator alloc; CxBuffer buf; void *space = cxMalloc(&alloc, 16); cxBufferInit(&buf, space, 16, &alloc, CX_BUFFER_AUTO_EXTEND); expect_default_flush_config(&buf); EXPECT_EQ(buf.space, space); EXPECT_EQ(buf.flags & CX_BUFFER_AUTO_EXTEND, CX_BUFFER_AUTO_EXTEND); EXPECT_EQ(buf.flags & CX_BUFFER_FREE_CONTENTS, 0); EXPECT_EQ(buf.pos, 0); EXPECT_EQ(buf.size, 0); EXPECT_EQ(buf.capacity, 16); EXPECT_EQ(buf.allocator, &alloc); cxBufferDestroy(&buf); EXPECT_FALSE(alloc.verify()); cxFree(&alloc, space); EXPECT_TRUE(alloc.verify()); } TEST(BufferInit, WrapSpaceAutoFree) { CxTestingAllocator alloc; CxBuffer buf; void *space = cxMalloc(&alloc, 16); cxBufferInit(&buf, space, 16, &alloc, CX_BUFFER_FREE_CONTENTS); expect_default_flush_config(&buf); EXPECT_EQ(buf.space, space); EXPECT_EQ(buf.flags & CX_BUFFER_AUTO_EXTEND, 0); EXPECT_EQ(buf.flags & CX_BUFFER_FREE_CONTENTS, CX_BUFFER_FREE_CONTENTS); EXPECT_EQ(buf.pos, 0); EXPECT_EQ(buf.size, 0); EXPECT_EQ(buf.capacity, 16); EXPECT_EQ(buf.allocator, &alloc); EXPECT_FALSE(alloc.verify()); cxBufferDestroy(&buf); EXPECT_TRUE(alloc.verify()); } TEST(BufferInit, FreshSpace) { CxTestingAllocator alloc; CxBuffer buf; cxBufferInit(&buf, nullptr, 8, &alloc, CX_BUFFER_DEFAULT); expect_default_flush_config(&buf); EXPECT_NE(buf.space, nullptr); EXPECT_EQ(buf.flags & CX_BUFFER_AUTO_EXTEND, 0); EXPECT_EQ(buf.flags & CX_BUFFER_FREE_CONTENTS, CX_BUFFER_FREE_CONTENTS); EXPECT_EQ(buf.pos, 0); EXPECT_EQ(buf.size, 0); EXPECT_EQ(buf.capacity, 8); EXPECT_EQ(buf.allocator, &alloc); EXPECT_FALSE(alloc.verify()); // space is still allocated cxBufferDestroy(&buf); EXPECT_TRUE(alloc.verify()); } TEST(BufferInit, OnHeap) { CxTestingAllocator alloc; CxBuffer *buf; void *space = cxMalloc(&alloc, 16); buf = cxBufferCreate(space, 16, &alloc, CX_BUFFER_FREE_CONTENTS); EXPECT_NE(buf, nullptr); expect_default_flush_config(buf); EXPECT_EQ(buf->space, space); EXPECT_EQ(buf->flags & CX_BUFFER_AUTO_EXTEND, 0); EXPECT_EQ(buf->flags & CX_BUFFER_FREE_CONTENTS, CX_BUFFER_FREE_CONTENTS); EXPECT_EQ(buf->pos, 0); EXPECT_EQ(buf->size, 0); EXPECT_EQ(buf->capacity, 16); EXPECT_EQ(buf->allocator, &alloc); cxBufferFree(buf); EXPECT_TRUE(alloc.verify()); } class BufferShiftFixture : public ::testing::Test { protected: void SetUp() override { ASSERT_TRUE(alloc.verify()); cxBufferInit(&buf, nullptr, 16, &alloc, CX_BUFFER_DEFAULT); memcpy(buf.space, "test____________", 16); buf.capacity = 8; // purposely pretend that the buffer has less capacity s.t. we can test beyond the range buf.pos = 4; buf.size = 4; } void TearDown() override { cxBufferDestroy(&buf); EXPECT_TRUE(alloc.verify()); } CxTestingAllocator alloc; CxBuffer buf{}; }; class BufferShiftLeft : public BufferShiftFixture { }; TEST_F(BufferShiftLeft, Zero) { ASSERT_EQ(buf.pos, 4); ASSERT_EQ(buf.size, 4); int ret = cxBufferShiftLeft(&buf, 0); EXPECT_EQ(ret, 0); EXPECT_EQ(buf.pos, 4); EXPECT_EQ(buf.size, 4); EXPECT_TRUE(memcmp(buf.space, "test________", 8) == 0); } TEST_F(BufferShiftLeft, ZeroOffsetInterface) { ASSERT_EQ(buf.pos, 4); ASSERT_EQ(buf.size, 4); int ret = cxBufferShift(&buf, -0); EXPECT_EQ(ret, 0); EXPECT_EQ(buf.pos, 4); EXPECT_EQ(buf.size, 4); EXPECT_TRUE(memcmp(buf.space, "test________", 8) == 0); } TEST_F(BufferShiftLeft, Standard) { ASSERT_EQ(buf.pos, 4); ASSERT_EQ(buf.size, 4); int ret = cxBufferShiftLeft(&buf, 2); EXPECT_EQ(ret, 0); EXPECT_EQ(buf.pos, 2); EXPECT_EQ(buf.size, 2); EXPECT_TRUE(memcmp(buf.space, "stst________", 8) == 0); } TEST_F(BufferShiftLeft, Overshift) { ASSERT_LT(buf.pos, 6); ASSERT_LT(buf.size, 6); int ret = cxBufferShiftLeft(&buf, 6); EXPECT_EQ(ret, 0); EXPECT_EQ(buf.pos, 0); EXPECT_EQ(buf.size, 0); EXPECT_TRUE(memcmp(buf.space, "test________", 8) == 0); } TEST_F(BufferShiftLeft, OvershiftPosOnly) { buf.pos = 2; ASSERT_EQ(buf.size, 4); int ret = cxBufferShiftLeft(&buf, 3); EXPECT_EQ(ret, 0); EXPECT_EQ(buf.pos, 0); EXPECT_EQ(buf.size, 1); EXPECT_TRUE(memcmp(buf.space, "test________", 8) == 0); } TEST_F(BufferShiftLeft, OffsetInterface) { buf.pos = 3; ASSERT_EQ(buf.size, 4); int ret = cxBufferShift(&buf, -2); EXPECT_EQ(ret, 0); EXPECT_EQ(buf.pos, 1); EXPECT_EQ(buf.size, 2); EXPECT_TRUE(memcmp(buf.space, "stst________", 8) == 0); } class BufferShiftRight : public BufferShiftFixture { }; TEST_F(BufferShiftRight, Zero) { ASSERT_EQ(buf.pos, 4); ASSERT_EQ(buf.size, 4); int ret = cxBufferShiftRight(&buf, 0); EXPECT_EQ(ret, 0); EXPECT_EQ(buf.pos, 4); EXPECT_EQ(buf.size, 4); EXPECT_TRUE(memcmp(buf.space, "test________", 8) == 0); } TEST_F(BufferShiftRight, ZeroOffsetInterface) { ASSERT_EQ(buf.pos, 4); ASSERT_EQ(buf.size, 4); int ret = cxBufferShift(&buf, +0); EXPECT_EQ(ret, 0); EXPECT_EQ(buf.pos, 4); EXPECT_EQ(buf.size, 4); EXPECT_TRUE(memcmp(buf.space, "test________", 8) == 0); } TEST_F(BufferShiftRight, Standard) { ASSERT_EQ(buf.pos, 4); ASSERT_EQ(buf.size, 4); int ret = cxBufferShiftRight(&buf, 3); EXPECT_EQ(ret, 0); EXPECT_EQ(buf.pos, 7); EXPECT_EQ(buf.size, 7); EXPECT_TRUE(memcmp(buf.space, "testest_____", 8) == 0); } TEST_F(BufferShiftRight, OvershiftDiscard) { ASSERT_EQ(buf.pos, 4); ASSERT_EQ(buf.size, 4); ASSERT_EQ(buf.capacity, 8); int ret = cxBufferShiftRight(&buf, 6); EXPECT_EQ(ret, 0); EXPECT_EQ(buf.pos, 8); EXPECT_EQ(buf.size, 8); EXPECT_EQ(buf.capacity, 8); EXPECT_TRUE(memcmp(buf.space, "test__te____", 8) == 0); } TEST_F(BufferShiftRight, OvershiftExtend) { ASSERT_EQ(buf.pos, 4); ASSERT_EQ(buf.size, 4); ASSERT_EQ(buf.capacity, 8); buf.flags |= CX_BUFFER_AUTO_EXTEND; int ret = cxBufferShiftRight(&buf, 6); EXPECT_EQ(ret, 0); EXPECT_EQ(buf.pos, 10); EXPECT_EQ(buf.size, 10); EXPECT_GE(buf.capacity, 10); EXPECT_TRUE(memcmp(buf.space, "test__test__", 8) == 0); } TEST_F(BufferShiftRight, OffsetInterface) { buf.pos = 3; ASSERT_EQ(buf.size, 4); int ret = cxBufferShift(&buf, 2); EXPECT_EQ(ret, 0); EXPECT_EQ(buf.pos, 5); EXPECT_EQ(buf.size, 6); EXPECT_TRUE(memcmp(buf.space, "tetest______", 8) == 0); } TEST(BufferMinimumCapacity, Sufficient) { CxTestingAllocator alloc; auto space = cxMalloc(&alloc, 8); CxBuffer buf; cxBufferInit(&buf, space, 8, &alloc, CX_BUFFER_FREE_CONTENTS); memcpy(space, "Testing", 8); buf.size = 8; cxBufferMinimumCapacity(&buf, 6); EXPECT_EQ(buf.capacity, 8); EXPECT_EQ(buf.size, 8); EXPECT_TRUE(memcmp(buf.space, "Testing", 8) == 0); cxBufferDestroy(&buf); EXPECT_TRUE(alloc.verify()); } TEST(BufferMinimumCapacity, Extend) { CxTestingAllocator alloc; auto space = cxMalloc(&alloc, 8); CxBuffer buf; cxBufferInit(&buf, space, 8, &alloc, CX_BUFFER_FREE_CONTENTS); // NO auto extend! memcpy(space, "Testing", 8); buf.size = 8; cxBufferMinimumCapacity(&buf, 16); EXPECT_EQ(buf.capacity, 16); EXPECT_EQ(buf.size, 8); EXPECT_TRUE(memcmp(buf.space, "Testing", 8) == 0); cxBufferDestroy(&buf); EXPECT_TRUE(alloc.verify()); } TEST(BufferClear, Test) { char space[16]; strcpy(space, "clear test"); CxBuffer buf; cxBufferInit(&buf, space, 16, cxDefaultAllocator, CX_BUFFER_DEFAULT); ASSERT_EQ(buf.size, 0); // only clear the used part of the buffer cxBufferClear(&buf); EXPECT_EQ(memcmp(space, "clear test", 10), 0); buf.size = 5; buf.pos = 3; cxBufferClear(&buf); EXPECT_EQ(memcmp(space, "\0\0\0\0\0 test", 10), 0); EXPECT_EQ(buf.size, 0); EXPECT_EQ(buf.pos, 0); cxBufferDestroy(&buf); } class BufferWrite : public ::testing::Test { protected: CxBuffer buf{}, target{}; void SetUp() override { cxBufferInit(&target, nullptr, 16, cxDefaultAllocator, CX_BUFFER_AUTO_EXTEND); cxBufferInit(&buf, nullptr, 16, cxDefaultAllocator, CX_BUFFER_DEFAULT); buf.capacity = 8; // artificially reduce capacity to check OOB writes memset(buf.space, 0, 16); memcpy(buf.space, "prep", 4); buf.size = buf.pos = 4; } void TearDown() override { cxBufferDestroy(&buf); cxBufferDestroy(&target); } void enableFlushing() { buf.flush_target = ⌖ buf.flush_func = reinterpret_cast<cx_write_func>(cxBufferWrite); buf.flush_blkmax = 1; } }; static size_t mock_write_limited_rate( void const *ptr, size_t size, __attribute__((unused)) size_t nitems, CxBuffer *buffer ) { // simulate limited target drain capacity static bool full = false; if (full) { full = false; return 0; } else { full = true; return cxBufferWrite(ptr, size, nitems > 2 ? 2 : nitems, buffer); } } TEST_F(BufferWrite, SizeOneFit) { const char *data = "test"; ASSERT_EQ(buf.capacity, 8); ASSERT_EQ(buf.pos, 4); ASSERT_EQ(buf.size, 4); size_t written = cxBufferWrite(data, 1, 4, &buf); EXPECT_EQ(written, 4); EXPECT_EQ(buf.size, 8); EXPECT_EQ(buf.pos, 8); EXPECT_EQ(buf.capacity, 8); EXPECT_EQ(memcmp(buf.space, "preptest", 8), 0); } TEST_F(BufferWrite, SizeOneDiscard) { const char *data = "testing"; ASSERT_EQ(buf.capacity, 8); ASSERT_EQ(buf.pos, 4); ASSERT_EQ(buf.size, 4); size_t written = cxBufferWrite(data, 1, 7, &buf); EXPECT_EQ(written, 4); EXPECT_EQ(buf.size, 8); EXPECT_EQ(buf.pos, 8); EXPECT_EQ(buf.capacity, 8); EXPECT_EQ(memcmp(buf.space, "preptest\0", 9), 0); } TEST_F(BufferWrite, SizeOneExtend) { buf.flags |= CX_BUFFER_AUTO_EXTEND; const char *data = "testing"; ASSERT_EQ(buf.capacity, 8); ASSERT_EQ(buf.pos, 4); ASSERT_EQ(buf.size, 4); size_t written = cxBufferWrite(data, 1, 7, &buf); EXPECT_EQ(written, 7); EXPECT_EQ(buf.size, 11); EXPECT_EQ(buf.pos, 11); EXPECT_GE(buf.capacity, 11); EXPECT_EQ(memcmp(buf.space, "preptesting", 11), 0); } TEST_F(BufferWrite, MultibyteFit) { const char *data = "test"; ASSERT_EQ(buf.capacity, 8); ASSERT_EQ(buf.pos, 4); ASSERT_EQ(buf.size, 4); size_t written = cxBufferWrite(data, 2, 2, &buf); EXPECT_EQ(written, 2); EXPECT_EQ(buf.size, 8); EXPECT_EQ(buf.pos, 8); EXPECT_EQ(buf.capacity, 8); EXPECT_EQ(memcmp(buf.space, "preptest", 8), 0); } TEST_F(BufferWrite, MultibyteDiscard) { const char *data = "testing"; ASSERT_EQ(buf.capacity, 8); ASSERT_EQ(buf.size, 4); buf.pos = 3; size_t written = cxBufferWrite(data, 2, 4, &buf); // remember: whole elements are discarded if they do not fit EXPECT_EQ(written, 2); EXPECT_EQ(buf.size, 7); EXPECT_EQ(buf.pos, 7); EXPECT_EQ(buf.capacity, 8); EXPECT_EQ(memcmp(buf.space, "pretest\0", 8), 0); } TEST_F(BufferWrite, MultibyteExtend) { buf.flags |= CX_BUFFER_AUTO_EXTEND; const char *data = "tester"; ASSERT_EQ(buf.capacity, 8); ASSERT_EQ(buf.size, 4); buf.pos = 3; size_t written = cxBufferWrite(data, 2, 3, &buf); // remember: whole elements are discarded if they do not fit EXPECT_EQ(written, 3); EXPECT_EQ(buf.size, 9); EXPECT_EQ(buf.pos, 9); EXPECT_GE(buf.capacity, 9); EXPECT_EQ(memcmp(buf.space, "pretester", 9), 0); } TEST_F(BufferWrite, PutcWrapperFit) { ASSERT_EQ(buf.capacity, 8); ASSERT_EQ(buf.pos, 4); ASSERT_EQ(buf.size, 4); int c = cxBufferPut(&buf, 0x200 | 'a'); EXPECT_EQ(c, 'a'); EXPECT_EQ(buf.size, 5); EXPECT_EQ(buf.pos, 5); EXPECT_EQ(buf.capacity, 8); EXPECT_EQ(memcmp(buf.space, "prepa\0", 6), 0); } TEST_F(BufferWrite, PutcWrapperDiscard) { ASSERT_EQ(buf.capacity, 8); ASSERT_EQ(buf.size, 4); buf.pos = 8; int c = cxBufferPut(&buf, 0x200 | 'a'); EXPECT_EQ(c, EOF); EXPECT_EQ(buf.size, 4); EXPECT_EQ(buf.pos, 8); EXPECT_EQ(buf.capacity, 8); EXPECT_EQ(memcmp(buf.space, "prep\0\0\0\0\0", 9), 0); } TEST_F(BufferWrite, PutcWrapperExtend) { buf.flags |= CX_BUFFER_AUTO_EXTEND; ASSERT_EQ(buf.capacity, 8); ASSERT_EQ(buf.size, 4); buf.pos = 8; int c = cxBufferPut(&buf, 0x200 | 'a'); EXPECT_EQ(c, 'a'); EXPECT_EQ(buf.size, 9); EXPECT_EQ(buf.pos, 9); EXPECT_GE(buf.capacity, 9); EXPECT_EQ(memcmp(buf.space, "prep\0\0\0\0a", 9), 0); } TEST_F(BufferWrite, PutStringWrapperFit) { const char *data = "test"; ASSERT_EQ(buf.capacity, 8); ASSERT_EQ(buf.pos, 4); ASSERT_EQ(buf.size, 4); size_t written = cxBufferPutString(&buf, data); EXPECT_EQ(written, 4); EXPECT_EQ(buf.size, 8); EXPECT_EQ(buf.pos, 8); EXPECT_EQ(buf.capacity, 8); EXPECT_EQ(memcmp(buf.space, "preptest", 8), 0); } TEST_F(BufferWrite, PutStringWrapperDiscard) { const char *data = "testing"; ASSERT_EQ(buf.capacity, 8); ASSERT_EQ(buf.pos, 4); ASSERT_EQ(buf.size, 4); size_t written = cxBufferPutString(&buf, data); EXPECT_EQ(written, 4); EXPECT_EQ(buf.size, 8); EXPECT_EQ(buf.pos, 8); EXPECT_EQ(buf.capacity, 8); EXPECT_EQ(memcmp(buf.space, "preptest\0", 9), 0); } TEST_F(BufferWrite, PutStringWrapperExtend) { buf.flags |= CX_BUFFER_AUTO_EXTEND; const char *data = "testing"; ASSERT_EQ(buf.capacity, 8); ASSERT_EQ(buf.pos, 4); ASSERT_EQ(buf.size, 4); size_t written = cxBufferPutString(&buf, data); EXPECT_EQ(written, 7); EXPECT_EQ(buf.size, 11); EXPECT_EQ(buf.pos, 11); EXPECT_GE(buf.capacity, 11); EXPECT_EQ(memcmp(buf.space, "preptesting", 11), 0); } TEST_F(BufferWrite, MultOverflow) { const char *data = "testing"; ASSERT_EQ(buf.capacity, 8); ASSERT_EQ(buf.pos, 4); ASSERT_EQ(buf.size, 4); size_t written = cxBufferWrite(data, 8, SIZE_MAX / 4, &buf); EXPECT_EQ(written, 0); EXPECT_EQ(buf.capacity, 8); EXPECT_EQ(buf.pos, 4); EXPECT_EQ(buf.size, 4); EXPECT_EQ(memcmp(buf.space, "prep\0", 5), 0); } TEST_F(BufferWrite, MaxCapaOverflow) { buf.flags |= CX_BUFFER_AUTO_EXTEND; const char *data = "testing"; ASSERT_EQ(buf.capacity, 8); ASSERT_EQ(buf.pos, 4); ASSERT_EQ(buf.size, 4); size_t written = cxBufferWrite(data, 1, SIZE_MAX - 2, &buf); EXPECT_EQ(written, 0); EXPECT_EQ(buf.capacity, 8); EXPECT_EQ(buf.pos, 4); EXPECT_EQ(buf.size, 4); EXPECT_EQ(memcmp(buf.space, "prep\0", 5), 0); } TEST_F(BufferWrite, OnlyOverwrite) { buf.flags |= CX_BUFFER_AUTO_EXTEND; ASSERT_EQ(buf.capacity, 8); memcpy(buf.space, "preptest", 8); buf.pos = 3; buf.size = 8; size_t written = cxBufferWrite("XXX", 2, 2, &buf); EXPECT_EQ(written, 2); EXPECT_EQ(buf.capacity, 8); EXPECT_EQ(buf.size, 8); EXPECT_EQ(buf.pos, 7); EXPECT_EQ(memcmp(buf.space, "preXXX\0t", 8), 0); } TEST_F(BufferWrite, FlushAtCapacity) { enableFlushing(); ASSERT_EQ(buf.capacity, 8); ASSERT_EQ(buf.pos, 4); size_t written = cxBufferWrite("foo", 1, 3, &buf); EXPECT_EQ(written, 3); ASSERT_EQ(buf.pos, 7); ASSERT_EQ(buf.size, 7); ASSERT_EQ(target.pos, 0); ASSERT_EQ(target.size, 0); written = cxBufferWrite("hello", 1, 5, &buf); EXPECT_EQ(written, 5); EXPECT_EQ(buf.pos, 0); EXPECT_EQ(buf.size, 0); EXPECT_EQ(buf.capacity, 8); EXPECT_EQ(target.pos, 12); ASSERT_EQ(target.size, 12); EXPECT_EQ(memcmp(target.space, "prepfoohello", 12), 0); } TEST_F(BufferWrite, FlushAtThreshold) { enableFlushing(); buf.flush_threshold = 12; buf.flags |= CX_BUFFER_AUTO_EXTEND; ASSERT_EQ(buf.capacity, 8); ASSERT_EQ(buf.pos, 4); size_t written = cxBufferWrite("foobar", 1, 6, &buf); EXPECT_EQ(written, 6); ASSERT_EQ(buf.pos, 10); ASSERT_EQ(buf.size, 10); ASSERT_GE(buf.capacity, 10); ASSERT_LE(buf.capacity, 12); ASSERT_EQ(target.pos, 0); ASSERT_EQ(target.size, 0); written = cxBufferWrite("hello", 1, 5, &buf); EXPECT_EQ(written, 5); EXPECT_EQ(buf.pos, 0); EXPECT_EQ(buf.size, 0); EXPECT_LE(buf.capacity, 12); EXPECT_EQ(target.pos, 15); ASSERT_EQ(target.size, 15); EXPECT_EQ(memcmp(target.space, "prepfoobarhello", 15), 0); } TEST_F(BufferWrite, FlushRateLimited) { enableFlushing(); // limit the rate of the flush function and the capacity of the target target.capacity = 16; target.flags &= ~CX_BUFFER_AUTO_EXTEND; buf.flush_func = (cx_write_func) mock_write_limited_rate; ASSERT_EQ(buf.capacity, 8); ASSERT_EQ(buf.pos, 4); size_t written = cxBufferWrite("foo", 1, 3, &buf); EXPECT_EQ(written, 3); ASSERT_EQ(buf.pos, 7); ASSERT_EQ(buf.size, 7); ASSERT_EQ(target.pos, 0); ASSERT_EQ(target.size, 0); written = cxBufferWrite("hello, world!", 1, 13, &buf); // " world!" fits into this buffer, the remaining stuff is flushed out EXPECT_EQ(written, 13); EXPECT_EQ(buf.pos, 7); EXPECT_EQ(buf.size, 7); EXPECT_EQ(buf.capacity, 8); EXPECT_EQ(memcmp(buf.space, " world!", 7), 0); EXPECT_EQ(target.pos, 13); ASSERT_EQ(target.size, 13); EXPECT_EQ(target.capacity, 16); EXPECT_EQ(memcmp(target.space, "prepfoohello,", 13), 0); } class BufferSeek : public BufferFixture { }; TEST_F(BufferSeek, SetZero) { int result = cxBufferSeek(&buf, 0, SEEK_SET); EXPECT_EQ(result, 0); EXPECT_EQ(buf.pos, 0); } TEST_F(BufferSeek, SetValid) { int result = cxBufferSeek(&buf, 5, SEEK_SET); EXPECT_EQ(result, 0); EXPECT_EQ(buf.pos, 5); } TEST_F(BufferSeek, SetInvalid) { ASSERT_EQ(buf.pos, 3); int result = cxBufferSeek(&buf, 6, SEEK_SET); EXPECT_NE(result, 0); EXPECT_EQ(buf.pos, 3); } TEST_F(BufferSeek, CurZero) { ASSERT_EQ(buf.pos, 3); int result = cxBufferSeek(&buf, 0, SEEK_CUR); EXPECT_EQ(result, 0); EXPECT_EQ(buf.pos, 3); } TEST_F(BufferSeek, CurValidPositive) { ASSERT_EQ(buf.pos, 3); int result = cxBufferSeek(&buf, 2, SEEK_CUR); EXPECT_EQ(result, 0); EXPECT_EQ(buf.pos, 5); } TEST_F(BufferSeek, CurValidNegative) { ASSERT_EQ(buf.pos, 3); int result = cxBufferSeek(&buf, -3, SEEK_CUR); EXPECT_EQ(result, 0); EXPECT_EQ(buf.pos, 0); } TEST_F(BufferSeek, CurInvalidPositive) { ASSERT_EQ(buf.pos, 3); int result = cxBufferSeek(&buf, 3, SEEK_CUR); EXPECT_NE(result, 0); EXPECT_EQ(buf.pos, 3); } TEST_F(BufferSeek, CurInvalidNegative) { ASSERT_EQ(buf.pos, 3); int result = cxBufferSeek(&buf, -4, SEEK_CUR); EXPECT_NE(result, 0); EXPECT_EQ(buf.pos, 3); } TEST_F(BufferSeek, EndZero) { ASSERT_EQ(buf.size, 6); int result = cxBufferSeek(&buf, 0, SEEK_END); // the (past-the-)end position is always invalid EXPECT_NE(result, 0); EXPECT_EQ(buf.pos, 3); } TEST_F(BufferSeek, EndValid) { ASSERT_EQ(buf.size, 6); int result = cxBufferSeek(&buf, -6, SEEK_END); EXPECT_EQ(result, 0); EXPECT_EQ(buf.pos, 0); } TEST_F(BufferSeek, EndInvalid) { ASSERT_EQ(buf.size, 6); int result = cxBufferSeek(&buf, 1, SEEK_END); EXPECT_NE(result, 0); EXPECT_EQ(buf.pos, 3); } TEST_F(BufferSeek, WhenceInvalid) { ASSERT_EQ(buf.size, 6); ASSERT_EQ(buf.pos, 3); int result = cxBufferSeek(&buf, 2, 9000); EXPECT_NE(result, 0); EXPECT_EQ(buf.size, 6); EXPECT_EQ(buf.pos, 3); } class BufferEof : public BufferFixture { }; TEST_F(BufferEof, Reached) { buf.pos = buf.size; EXPECT_TRUE(cxBufferEof(&buf)); buf.pos = buf.size - 1; ASSERT_FALSE(cxBufferEof(&buf)); cxBufferPut(&buf, 'a'); EXPECT_TRUE(cxBufferEof(&buf)); } TEST_F(BufferEof, NotReached) { buf.pos = buf.size - 1; EXPECT_FALSE(cxBufferEof(&buf)); buf.pos = 0; cxBufferWrite("test", 1, 5, &buf); EXPECT_FALSE(cxBufferEof(&buf)); } class BufferRead : public ::testing::Test { protected: CxBuffer buf{}; void SetUp() override { cxBufferInit(&buf, nullptr, 16, cxDefaultAllocator, CX_BUFFER_DEFAULT); buf.capacity = 8; // artificially reduce capacity to check OOB writes memset(buf.space, 0, 16); memcpy(buf.space, "some data", 9); buf.size = 9; } void TearDown() override { cxBufferDestroy(&buf); } }; TEST_F(BufferRead, GetByte) { buf.pos = 2; EXPECT_EQ(cxBufferGet(&buf), 'm'); EXPECT_EQ(cxBufferGet(&buf), 'e'); EXPECT_EQ(cxBufferGet(&buf), ' '); EXPECT_EQ(cxBufferGet(&buf), 'd'); EXPECT_EQ(buf.pos, 6); } TEST_F(BufferRead, GetEof) { buf.pos = buf.size; EXPECT_EQ(cxBufferGet(&buf), EOF); } TEST_F(BufferRead, ReadWithinBounds) { buf.pos = 2; char target[4]; auto read = cxBufferRead(&target, 1, 4, &buf); ASSERT_EQ(read, 4); EXPECT_EQ(memcmp(&target, "me d", 4), 0); EXPECT_EQ(buf.pos, 6); } TEST_F(BufferRead, ReadOutOfBounds) { buf.pos = 6; char target[4]; auto read = cxBufferRead(&target, 1, 4, &buf); ASSERT_EQ(read, 3); EXPECT_EQ(memcmp(&target, "ata", 3), 0); EXPECT_EQ(buf.pos, 9); } TEST_F(BufferRead, ReadOutOfBoundsMultibyte) { buf.pos = 6; char target[4]; target[2] = '\0'; auto read = cxBufferRead(&target, 2, 2, &buf); ASSERT_EQ(read, 1); EXPECT_EQ(memcmp(&target, "at\0", 3), 0); EXPECT_EQ(buf.pos, 8); } TEST_F(BufferRead, ReadEof) { buf.pos = 9; char target[4]; auto read = cxBufferRead(&target, 1, 1, &buf); ASSERT_EQ(read, 0); EXPECT_EQ(buf.pos, 9); }