Sun, 18 Feb 2024 13:01:09 +0100
add convenience macros for cx_array_*
/* * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER. * * Copyright 2024 Mike Becker, Olaf Wintermann All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include "cx/tree.h" #include "cx/array_list.h" #include <assert.h> #define CX_TREE_PTR(cur, off) (*(void**)(((char*)(cur))+(off))) #define CX_TREE_PTR(cur, off) (*(void**)(((char*)(cur))+(off))) #define tree_parent(node) CX_TREE_PTR(node, loc_parent) #define tree_children(node) CX_TREE_PTR(node, loc_children) #define tree_prev(node) CX_TREE_PTR(node, loc_prev) #define tree_next(node) CX_TREE_PTR(node, loc_next) void cx_tree_link( void *restrict parent, void *restrict node, ptrdiff_t loc_parent, ptrdiff_t loc_children, ptrdiff_t loc_prev, ptrdiff_t loc_next ) { void *current_parent = tree_parent(node); if (current_parent == parent) return; if (current_parent != NULL) { cx_tree_unlink(node, loc_parent, loc_children, loc_prev, loc_next); } if (tree_children(parent) == NULL) { tree_children(parent) = node; } else { void *children = tree_children(parent); tree_prev(children) = node; tree_next(node) = children; tree_children(parent) = node; } tree_parent(node) = parent; } void cx_tree_unlink( void *node, ptrdiff_t loc_parent, ptrdiff_t loc_children, ptrdiff_t loc_prev, ptrdiff_t loc_next ) { if (tree_parent(node) == NULL) return; void *left = tree_prev(node); void *right = tree_next(node); assert(left == NULL || tree_children(tree_parent(node)) != node); if (left == NULL) { tree_children(tree_parent(node)) = right; } else { tree_next(left) = right; } if (right != NULL) tree_prev(right) = left; tree_parent(node) = NULL; tree_prev(node) = NULL; tree_next(node) = NULL; } int cx_tree_search( void const *root, void const *data, cx_tree_search_func sfunc, void **result, ptrdiff_t loc_children, ptrdiff_t loc_next ) { int ret; *result = NULL; // shortcut: compare root before doing anything else ret = sfunc(root, data); if (ret < 0) { return ret; } else if (ret == 0 || tree_children(root) == NULL) { *result = (void*)root; return ret; } // create a working stack size_t work_cap = 32; size_t work_size = 0; void const **work = malloc(sizeof(void*) * work_cap); #define work_add(node) cx_array_add(&work, &work_size, &work_cap, \ sizeof(void*), &(node), cx_array_default_reallocator) // add the children of root to the working stack { void *c = tree_children(root); while (c != NULL) { work_add(c); c = tree_next(c); } } // remember a candidate for adding the data // also remember the exact return code from sfunc void *candidate = NULL; int ret_candidate = -1; // process the working stack while (work_size > 0) { // pop element void const *node = work[--work_size]; // apply the search function ret = sfunc(node, data); if (ret == 0) { // if found, exit the search *result = (void*) node; work_size = 0; break; } else if (ret > 0) { // if children might contain the data, add them to the stack void *c = tree_children(node); while (c != NULL) { work_add(c); c = tree_next(c); } // remember this node in case no child is suitable if (ret_candidate < 0 || ret < ret_candidate) { candidate = (void *) node; ret_candidate = ret; } } } // not found, but was there a candidate? if (ret != 0 && candidate != NULL) { ret = ret_candidate; *result = candidate; } // free the working queue and return #undef workq_add free(work); return ret; } static bool cx_tree_iter_valid(void const *it) { struct cx_tree_iterator_s const *iter = it; return iter->node != NULL; } static void *cx_tree_iter_current(void const *it) { struct cx_tree_iterator_s const *iter = it; return iter->node; } static void cx_tree_iter_stack_add( struct cx_tree_iterator_s *iter, void *node ) { cx_array_add(&iter->stack, &iter->depth, &iter->stack_capacity, sizeof(void*), &node, cx_array_default_reallocator); } static void cx_tree_iter_next(void *it) { struct cx_tree_iterator_s *iter = it; // TODO: support mutating iterator // TODO: implement } CxTreeIterator cx_tree_iterator( void *root, int passes, ptrdiff_t loc_children, ptrdiff_t loc_next ) { CxTreeIterator iter; iter.loc_children = loc_children; iter.loc_next = loc_next; iter.requested_passes = passes; // invalidate iterator immediately when passes is invalid if ((passes & (CX_TREE_ITERATOR_ENTER | CX_TREE_ITERATOR_NEXT_CHILD | CX_TREE_ITERATOR_EXIT)) == 0) { iter.stack = NULL; iter.node = NULL; return iter; } // allocate stack iter.stack_capacity = 16; iter.stack = malloc(sizeof(void *) * 16); iter.depth = 0; // determine start if ((passes & CX_TREE_ITERATOR_ENTER) == 0) { // we have to skip the first "entering" passes void *s = NULL; void *n = root; iter.counter = 0; do { iter.counter++; iter.source = s; iter.node = n; cx_tree_iter_stack_add(&iter, n); s = n; n = tree_children(n); } while (n != NULL); // found a leaf node s (might be root itself if it has no children) // check if there is a sibling n = tree_next(s); if (n == NULL) { // no sibling found, exit back to parent node // TODO: implement } else { // there is a sibling if ((passes & CX_TREE_ITERATOR_EXIT) == 0) { // no exit requested, conclude that only next_child is requested iter.source = s; iter.node = n; iter.counter++; iter.current_pass = CX_TREE_ITERATOR_NEXT_CHILD; } else { // exit requested, so we have found our first pass // iter.node and iter.source are still correct iter.current_pass = CX_TREE_ITERATOR_EXIT; } } } else { // enter passes are requested, we can start by entering the root node iter.source = NULL; iter.node = root; iter.current_pass = CX_TREE_ITERATOR_ENTER; iter.counter = 1; iter.depth = 1; iter.stack[0] = root; } // assign base iterator functions iter.base.mutating = false; iter.base.remove = false; iter.base.current_impl = NULL; iter.base.valid = cx_tree_iter_valid; iter.base.next = cx_tree_iter_next; iter.base.current = cx_tree_iter_current; return iter; }