docs/src/modules.md

Mon, 14 May 2018 13:15:32 +0200

author
Mike Becker <universe@uap-core.de>
date
Mon, 14 May 2018 13:15:32 +0200
changeset 304
1f9237cfeb26
parent 302
8628147734d6
child 310
b09677d72413
permissions
-rw-r--r--

fixes typo in modules.md

     1 ---
     2 title: Modules
     3 ---
     5 UCX provides several modules for data structures and algorithms.
     6 You may choose to use specific modules by inclueding the corresponding header
     7 file.
     8 Please note, that some modules make use of other UCX modules.
     9 For instance, the [Allocator](#allocator) module is used by many other modules
    10 to allow flexible memory allocation.
    11 By default the header files are placed into an `ucx` directory within your
    12 systems include directory. In this case you can use a module by including it
    13 via `#include <ucx/MODULENAME.h>`.
    14 Required modules are included automatically.
    16 <div id="modules" align="center">
    18 ----------------------- ----------------------      ----------------------------     -------------------------
    19 [Allocator](#allocator) [AVL&nbsp;Tree](#avl-tree)  [Buffer](#buffer)                [List](#list)
    20 [Logging](#logging)     [Map](#map)                 [Memory&nbsp;Pool](#memory-pool) [Properties](#properties)
    21 [Stack](#stack)         [String](#string)           [Testing](#testing)              [Utilities](#utilities)
    22 ----------------------- ----------------------      ----------------------------     -------------------------
    24 </div>
    26 ## Allocator
    28 *Header file:* [allocator.h](api/allocator_8h.html)  
    29 *Required modules:* None.
    31 A UCX allocator consists of a pointer to the memory area / pool and four
    32 function pointers to memory management functions operating on this memory
    33 area / pool. These functions shall behave equivalent to the standard libc
    34 functions `malloc`, `calloc`, `realloc` and `free`.
    36 The signature of the memory management functions is based on the signature
    37 of the respective libc function but each of them takes the pointer to the
    38 memory area / pool as first argument.
    40 As the pointer to the memory area / pool can be arbitrarily chosen, any data
    41 can be provided to the memory management functions. One example is the
    42 [UCX Memory Pool](#memory-pool).
    44 ## AVL Tree
    46 *Header file:* [avl.h](api/avl_8h.html)  
    47 *Required modules:* [Allocator](#allocator)
    49 This binary search tree implementation allows average O(1) insertion and
    50 removal of elements (excluding binary search time).
    51 All common binary tree operations are implemented. Furthermore, this module
    52 provides search functions via lower and upper bounds.
    54 ### Filtering items with a time window
    56 Suppose you have a list of items which contain a `time_t` value and your task
    57 is to find all items within a time window `[t_start, t_end]`.
    58 With AVL Trees this is easy:
    59 ```C
    60 /* ---------------------
    61  * Somewhere in a header
    62  */
    63 typedef struct {
    64     time_t ts;
    65     /* other important data */
    66 } MyObject;
    68 /* -----------
    69  * Source code
    70  */
    72 UcxAVLTree* tree = ucx_avl_new(ucx_longintcmp);
    73 /* ... populate tree with objects, use '& MyObject.ts' as key ... */
    76 /* Now find every item, with 30 <= ts <= 70 */
    77 time_t ts_start = 30;
    78 time_t ts_end = 70;
    80 printf("Values in range:\n");
    81 for (
    82         UcxAVLNode* node = ucx_avl_find_node(
    83             tree, (intptr_t) &ts_start,
    84             ucx_longintdist, UCX_AVL_FIND_LOWER_BOUNDED);
    85         node && (*(time_t*)node->key) <= ts_end;
    86         node = ucx_avl_succ(node)
    87     ) {
    88     printf(" ts: %ld\n", ((MyObject*)node->value)->ts);
    89 }
    91 ucx_avl_free_content(tree, free);
    92 ucx_avl_free(tree);
    93 ```
    95 ## Buffer
    97 *Header file:* [buffer.h](api/buffer_8h.html)  
    98 *Required modules:* None.
   100 Instances of this buffer implementation can be used to read from or to write to
   101 memory like you would do with a stream. This allows the use of
   102 `ucx_stream_copy()` from the [Utilities](#utilities) module to copy contents
   103 from one buffer to another or from file or network streams to the buffer and
   104 vice-versa.
   106 More features for convenient use of the buffer can be enabled, like automatic
   107 memory management and automatic resizing of the buffer space.
   108 See the documentation of the macro constants in the header file for more
   109 information.
   111 ### Add line numbers to a file
   113 When reading a file line by line, you have three options: first, you could limit
   114 the maximum supported line length.
   115 Second, you allocate a god buffer large
   116 enough for the most lines a text file could have.
   117 And third, undoubtedly the best option, you start with a small buffer, which
   118 adjusts on demand.
   119 An `UcxBuffer` can be created to do just that for you.
   120 Just pass the `UCX_BUFFER_AUTOEXTEND` option to the initialization function.
   121 Here is a full working program, which adds line numbers to a file.
   122 ```C
   123 #include <stdio.h>
   124 #include <ucx/buffer.h>
   125 #include <ucx/utils.h>
   127 int main(int argc, char** argv) {
   129     if (argc != 2) {
   130         fprintf(stderr, "Usage: %s <file>\n", argv[0]);
   131         return 1;
   132     }
   134     FILE* input = fopen(argv[1], "r");
   135     if (!input) {
   136         perror("Canno read input");
   137         return 1;
   138     }
   140     const size_t chunksize = 256;
   142     UcxBuffer* linebuf =
   143         ucx_buffer_new(
   144             NULL,       /* the buffer should manage the memory area for us */
   145             2*chunksize,  /* initial size should be twice the chunk size */
   146             UCX_BUFFER_AUTOEXTEND); /* the buffer will grow when necessary */
   148     size_t lineno = 1;
   149     do {
   150         /* read line chunk */
   151         size_t read = ucx_stream_ncopy(
   152                 input, linebuf, fread, ucx_buffer_write, chunksize);
   153         if (read == 0) break;
   155         /* handle line endings */
   156         do {
   157             sstr_t bufstr = ucx_buffer_to_sstr(linebuf);
   158             sstr_t nl = sstrchr(bufstr, '\n');
   159             if (nl.length == 0) break;
   161             size_t linelen = bufstr.length - nl.length;
   162             sstr_t linestr = sstrsubsl(bufstr, 0, linelen);
   164             printf("%zu: %" PRIsstr "\n", lineno++, SFMT(linestr));
   166             /* shift the buffer to the next line */
   167             ucx_buffer_shift_left(linebuf, linelen+1);
   168         } while(1);
   170     } while(1);
   172     /* print the 'noeol' line, if any */
   173     sstr_t lastline = ucx_buffer_to_sstr(linebuf);
   174     if (lastline.length > 0) {
   175         printf("%zu: %" PRIsstr, lineno, SFMT(lastline));
   176     }
   178     fclose(input);
   179     ucx_buffer_free(linebuf);
   181     return 0;
   182 }
   183 ```
   185 ## List
   187 *Header file:* [list.h](api/list_8h.html)  
   188 *Required modules:* [Allocator](#allocator)
   190 This module provides the data structure and several functions for a doubly
   191 linked list. Among the common operations like insert, remove, search and sort,
   192 we allow convenient iteration via a special `UCX_FOREACH` macro.
   194 ### Remove duplicates from an array of strings
   196 Assume you are given an array of `sstr_t` and want to create a list of these
   197 strings without duplicates.
   198 ```C
   199 #include <stdio.h>
   200 #include <ucx/list.h>
   201 #include <ucx/string.h>
   202 #include <ucx/utils.h>
   204 UcxList* remove_duplicates(sstr_t* array, size_t arrlen) {
   205     UcxList* list = NULL;
   206     for (size_t i = 0 ; i < arrlen ; ++i) {
   207         if (ucx_list_find(list, array+i, ucx_sstrcmp, NULL) == -1) {
   208             sstr_t* s = malloc(sizeof(sstr_t));
   209             *s = sstrdup(array[i]);
   210             list = ucx_list_append(list, s);
   211         }
   212     }
   213     return list;
   214 }
   216 /* we will need this function to clean up the list contents later */
   217 void free_sstr(void* ptr) {
   218     sstr_t* s = ptr;
   219     free(s->ptr);
   220     free(s);
   221 }
   223 /* ... */
   225 sstr_t* array = /* some array of strings */
   226 size_t arrlen = /* the length of the array */
   228 UcxList* list = remove_duplicates(array,arrlen);
   230 /* Iterate over the list and print the elements */
   231 UCX_FOREACH(elem, list) {
   232     sstr_t s = *((sstr_t*)elem->data);
   233     printf("%" PRIsstr "\n", SFMT(s));
   234 }
   236 /* Use our free function to free the duplicated strings. */
   237 ucx_list_free_content(list, free_sstr);
   238 ucx_list_free(list);
   239 ```
   241 ## Logging
   243 *Header file:* [logging.h](api/logging_8h.html)  
   244 *Required modules:* [Map](#map), [String](#string)
   246 The logging module comes with some predefined log levels and allows some more
   247 customization. You may choose if you want to get timestamps or source file and
   248 line number logged automatically when outputting a message.
   249 The following function call initializes a debug logger with all of the above
   250 information:
   251 ```C
   252     log = ucx_logger_new(stdout, UCX_LOGGER_DEBUG,
   253             UCX_LOGGER_LEVEL | UCX_LOGGER_TIMESTAMP | UCX_LOGGER_SOURCE);
   254 ```
   255 Afterwards you can use this logger with the predefined macros
   256 ```C
   257     ucx_logger_trace(log, "Verbose output");
   258     ucx_logger_debug(log, "Debug message");
   259     ucx_logger_info(log, "Information");
   260     ucx_logger_warn(log, "Warning");
   261     ucx_logger_error(log, "Error message");
   262 ```
   263 or you use
   264 ```C
   265     ucx_logger_log(log, CUSTOM_LEVEL, "Some message")
   266 ```
   267 When you use your custom log level, don't forget to register it with
   268 ```C
   269     ucx_logger_register_level(log, CUSTOM_LEVEL, "CUSTOM")
   270 ```
   271 where the last argument must be a string literal.
   273 ## Map
   275 *Header file:* [map.h](api/map_8h.html)  
   276 *Required modules:* [Allocator](#allocator), [String](#string)
   278 This module provides a hash map implementation using murmur hash 2 and separate
   279 chaining with linked lists. Similarly to the list module, we provide a
   280 `UCX_MAP_FOREACH` macro to conveniently iterate through the key/value pairs.
   282 ### Parsing command line options
   284 Assume you want to parse command line options and record them within a map.
   285 One way to do this is shown by the following code sample:
   286 ```C
   287     UcxMap* options = ucx_map_new(16);
   288     const char *NOARG = "";
   290     char *option = NULL;
   291     char optchar = 0;
   292     for(int i=1;i<argc;i++) {
   293         char *arg = argv[i];
   294         size_t len = strlen(arg);
   295         if(len > 1 && arg[0] == '-') {
   296             for(int c=1;c<len;c++) {
   297                 if(option) {
   298                     fprintf(stderr,
   299                             "Missing argument for option -%c\n", optchar);
   300                     return 1;
   301                 }
   302                 switch(arg[c]) {
   303                     default: {
   304                         fprintf(stderr, "Unknown option -%c\n\n", arg[c]);
   305                         return 1;
   306                     }
   307                     case 'v': {
   308                         ucx_map_cstr_put(options, "verbose", NOARG);
   309                         break;
   310                     }
   311                     case 'o': {
   312                         option = "output";
   313                         optchar = 'o';
   314                         break;
   315                     }
   316                 }
   317             }
   318         } else if(option) {
   319             ucx_map_cstr_put(options, option, arg);
   320             option = NULL;
   321         } else {
   322             /* ... handle argument that is not an option ... */
   323         }
   324     }
   325     if(option) {
   326         fprintf(stderr,
   327                 "Missing argument for option -%c\n", optchar);
   328         return 1;
   329     }
   330 ```
   331 With the following loop, you can access the previously recorded options:
   332 ```C
   333     UcxMapIterator iter = ucx_map_iterator(options);
   334     char *arg;
   335     UCX_MAP_FOREACH(optkey, arg, iter) {
   336         char* opt = optkey.data;
   337         if (*arg) {
   338             printf("%s = %s\n", opt, arg);
   339         } else {
   340             printf("%s active\n", opt);
   341         }
   342     }
   343 ```
   344 Don't forget to call `ucx_map_free()`, when you are done with the map.
   346 ## Memory Pool
   348 *Header file:* [mempool.h](api/mempool_8h.html)  
   349 *Required modules:* [Allocator](#allocator)
   351 Here we have a concrete allocator implementation in the sense of a memory pool.
   352 This pool allows you to register destructor functions for the allocated memory,
   353 which are automatically called on the destruction of the pool.
   354 But you may also register *independent* destructor functions within a pool in
   355 case some external library allocated memory for you, which should be
   356 destroyed together with this pool.
   358 Many UCX modules support the use of an allocator.
   359 The [String Module](#string), for instance, provides the `sstrdup_a()` function,
   360 which uses the specified allocator to allocate the memory for the duplicated
   361 string.
   362 This way, you can use a `UcxMempool` to keep track of the memory occupied by
   363 duplicated strings and cleanup everything with just a single call to
   364 `ucx_mempool_destroy()`.
   366 ### Read CSV data into a structure
   368 The following code example shows some of the basic memory pool functions and
   369 how they can be used with other UCX modules.
   370 ```C
   371 #include <stdio.h>
   372 #include <ucx/mempool.h>
   373 #include <ucx/list.h>
   374 #include <ucx/string.h>
   375 #include <ucx/buffer.h>
   376 #include <ucx/utils.h>
   378 typedef struct {
   379     sstr_t column_a;
   380     sstr_t column_b;
   381     sstr_t column_c;
   382 } CSVData;
   384 int main(int argc, char** argv) {
   386     UcxMempool* pool = ucx_mempool_new(128);
   388     FILE *f = fopen("test.csv", "r");
   389     if (!f) {
   390         perror("Cannot open file");
   391         return 1;
   392     }
   393     /* close the file automatically at pool destruction*/
   394     ucx_mempool_reg_destr(pool, f, (ucx_destructor) fclose);
   396     /* create a buffer and register it at the memory pool for destruction */
   397     UcxBuffer* content = ucx_buffer_new(NULL, 256, UCX_BUFFER_AUTOEXTEND);
   398     ucx_mempool_reg_destr(pool, content, (ucx_destructor) ucx_buffer_free);
   400     /* read the file and split it by lines first */
   401     ucx_stream_copy(f, content, fread, ucx_buffer_write);
   402     sstr_t contentstr = ucx_buffer_to_sstr(content);
   403     ssize_t lc = 0;
   404     sstr_t* lines = sstrsplit_a(pool->allocator, contentstr, S("\n"), &lc);
   406     /* skip the header and parse the remaining data */
   407     UcxList* datalist = NULL;
   408     for (size_t i = 1 ; i < lc ; i++) {
   409         if (lines[i].length == 0) continue;
   410         ssize_t fc = 3;
   411         sstr_t* fields = sstrsplit_a(pool->allocator, lines[i], S(";"), &fc);
   412         if (fc != 3) {
   413             fprintf(stderr, "Syntax error in line %zu.\n", i);
   414             ucx_mempool_destroy(pool);
   415             return 1;
   416         }
   417         CSVData* data = ucx_mempool_malloc(pool, sizeof(CSVData));
   418         data->column_a = fields[0];
   419         data->column_b = fields[1];
   420         data->column_c = fields[2];
   421         datalist = ucx_list_append_a(pool->allocator, datalist, data);
   422     }
   424     /* control output */
   425     UCX_FOREACH(elem, datalist) {
   426         CSVData* data = elem->data;
   427         printf("Column A: %" PRIsstr " | "
   428                "Column B: %" PRIsstr " | "
   429                "Column C: %" PRIsstr "\n",
   430                SFMT(data->column_a), SFMT(data->column_b), SFMT(data->column_c)
   431         );
   432     }
   434     /* cleanup everything, no manual free() needed */
   435     ucx_mempool_destroy(pool);
   437     return 0;
   438 } 
   439 ```
   441 ### Overriding the default destructor
   443 Sometimes you need to allocate memory with `ucx_mempool_malloc()`, but the
   444 memory is not supposed to be freed with a simple call to `free()`.
   445 In this case, you can overwrite the default destructor as follows:
   446 ```C
   447     MyObject* obj = ucx_mempool_malloc(pool, sizeof(MyObject));
   449     /* some special initialization with own resource management */
   450     my_object_init(obj);
   452     /* register destructor function */
   453     ucx_mempool_set_destr(obj, (ucx_destructor) my_object_destroy);
   454 ```
   455 Be aware, that your destructor function should not free any memory, that is
   456 also managed by the pool.
   457 Otherwise you might be risking a double-free.
   459 ## Properties
   461 *Header file:* [properties.h](api/properties_8h.html)  
   462 *Required modules:* [Map](#map)
   464 This module provides load and store function for `*.properties` files.
   465 The key/value pairs are stored within an UCX Map.
   467 ### Example: Loading properties from a file
   469 ```C
   470 /* Open the file as usual */
   471 FILE* file = fopen("myprops.properties", "r");
   472 if (!file) {
   473     // error handling
   474     return 1;
   475 }
   477 /* Load the properties from the file */
   478 UcxMap* myprops = ucx_map_new(16);
   479 if (ucx_properties_load(myprops, file)) {
   480     /* ... error handling ... */
   481     fclose(file);
   482     ucx_map_free(myprops);
   483     return 1;
   484 }
   486 /* Print out the key/value pairs */
   487 char* propval;
   488 UcxMapIterator propiter = ucx_map_iterator(myprops);
   489 UCX_MAP_FOREACH(key, propval, propiter) {
   490     printf("%s = %s\n", (char*)key.data, propval);
   491 }
   493 /* Don't forget to free the values before freeing the map */
   494 ucx_map_free_content(myprops, NULL);
   495 ucx_map_free(myprops);
   496 fclose(file);
   497 ```
   499 ## Stack
   501 *Header file:* [stack.h](api/stack_8h.html)  
   502 *Required modules:* [Allocator](#allocator)
   504 This concrete implementation of an UCX Allocator allows you to grab some amount
   505 of memory which is then handled as a stack.
   506 Please note, that the term *stack* only refers to the behavior of this
   507 allocator. You may still choose to use either stack or heap memory
   508 for the underlying space.
   509 A typical use case is an algorithm where you need to allocate and free large
   510 amounts of memory very frequently.
   512 The following code sample shows how to initialize a stack and push and pop
   513 simple data.
   514 ```C
   515     const size_t len = 1024;
   516     char space[len];
   517     UcxStack stack;
   518     ucx_stack_init(&stack, space, len);
   520     int i = 42;
   521     float f = 3.14f;
   522     const char* str = "Hello!";
   523     size_t strn = 7;
   525     /* push the integer */
   526     ucx_stack_push(&stack, sizeof(int), &i);
   528     /* push the float and rember the address */
   529     float* remember = ucx_stack_push(&stack, sizeof(float), &f);
   531     /* push the string with zero terminator */
   532     ucx_stack_push(&stack, strn, str);
   534     /* if we forget, how big an element was, we can ask the stack */
   535     printf("Length of string: %zu\n", ucx_stack_topsize(&stack)-1);
   537     /* retrieve the string as sstr_t, without zero terminator! */
   538     sstr_t s;
   539     s.length = ucx_stack_topsize(&stack)-1;
   540     s.ptr = malloc(s.length);
   541     ucx_stack_popn(&stack, s.ptr, s.length);
   542     printf("%" PRIsstr "\n", SFMT(s));
   544     /* print the float directly from the stack and free it */
   545     printf("Float: %f\n", *remember);
   546     ucx_stack_free(&stack, remember);
   548     /* the last element is the integer */
   549     int j;
   550     ucx_stack_pop(&stack, &j);
   551     printf("Integer: %d\n", j);
   552 ```
   556 ## String
   558 *Header file:* [string.h](api/string_8h.html)  
   559 *Required modules:* [Allocator](#allocator)
   561 This module provides a safe implementation of bounded string.
   562 Usually C strings do not carry a length. While for zero-terminated strings you
   563 can easily get the length with `strlen`, this is not generally possible for
   564 arbitrary strings.
   565 The `sstr_t` type of this module always carries the string and its length to
   566 reduce the risk of buffer overflows dramatically.
   568 ### Initialization
   570 There are several ways to create an `sstr_t`:
   572 ```C
   573 /* (1) sstr() uses strlen() internally, hence cstr MUST be zero-terminated */
   574 sstr_t a = sstr(cstr);
   576 /* (2) cstr does not need to be zero-terminated, if length is specified */
   577 sstr_t b = sstrn(cstr, len);
   579 /* (3) S() macro creates sstr_t from a string using sizeof() and using sstrn().
   580        This version is especially useful for function arguments */
   581 sstr_t c = S("hello");
   583 /* (4) ST() macro creates sstr_t struct literal using sizeof() */
   584 sstr_t d = ST("hello");
   585 ```
   587 You should not use the `S()` or `ST()` macro with string of unknown origin,
   588 since the `sizeof()` call might not coincide with the string length in those
   589 cases. If you know what you are doing, it can save you some performance,
   590 because you do not need the `strlen()` call.
   592 ### Finding the position of a substring
   594 The `sstrstr()` function gives you a new `sstr_t` object starting with the
   595 requested substring. Thus determining the position comes down to a simple
   596 subtraction.
   598 ```C
   599 sstr_t haystack = ST("Here we go!");
   600 sstr_t needle = ST("we");
   601 sstr_t result = sstrstr(haystack, needle);
   602 if (result.ptr)
   603     printf("Found at position %zd.\n", haystack.length-result.length);
   604 else
   605     printf("Not found.\n");
   606 ```
   608 ### Spliting a string by a delimiter
   610 The `sstrsplit()` function (and its allocator based version `sstrsplit_a()`) is
   611 very powerful and might look a bit nasty at a first glance. But it is indeed
   612 very simple to use. It is even more convenient in combination with a memory
   613 pool.
   615 ```C
   616 sstr_t test = ST("here::are::some::strings");
   617 sstr_t delim = ST("::");
   619 ssize_t count = 0; /* no limit */
   620 UcxMempool* pool = ucx_mempool_new_default();
   622 sstr_t* result = sstrsplit_a(pool->allocator, test, delim, &count);
   623 for (ssize_t i = 0 ; i < count ; i++) {
   624     /* don't forget to specify the length via the %*s format specifier */
   625     printf("%*s\n", result[i].length, result[i].ptr);
   626 }
   628 ucx_mempool_destroy(pool);
   629 ```
   630 The output is:
   632     here
   633     are
   634     some
   635     strings
   637 The memory pool ensures, that all strings are freed.
   639 ## Testing
   641 *Header file:* [test.h](api/test_8h.html)  
   642 *Required modules:* None.
   644 This module provides a testing framework which allows you to execute test cases
   645 within test suites.
   646 To avoid code duplication within tests, we also provide the possibility to
   647 define test subroutines.
   649 You should declare test cases and subroutines in a header file per test unit
   650 and implement them as you would implement normal functions.
   651 ```C
   652     /* myunit.h */
   653     UCX_TEST(function_name);
   654     UCX_TEST_SUBROUTINE(subroutine_name, paramlist); /* optional */
   657     /* myunit.c */
   658     UCX_TEST_SUBROUTINE(subroutine_name, paramlist) {
   659         /* ... reusable tests with UCX_TEST_ASSERT() ... */
   660     }
   662     UCX_TEST(function_name) {
   663         /* ... resource allocation and other test preparation ... */
   665         /* mandatory marker for the start of the tests */
   666         UCX_TEST_BEGIN
   668         /*  ... verifications with UCX_TEST_ASSERT() ...
   669          * (and/or calls with UCX_TEST_CALL_SUBROUTINE())
   670          */
   672         /* mandatory marker for the end of the tests */
   673         UCX_TEST_END
   675         /* ... resource cleanup ...
   676          * (all code after UCX_TEST_END is always executed)
   677          */
   678     }
   679 ```
   680 If you want to use the `UCX_TEST_ASSERT()` macro in a function, you are
   681 *required* to use a `UCX_TEST_SUBROUTINE`.
   682 Otherwise the testing framework does not know where to jump, when the assertion
   683 fails.
   685 After implementing the tests, you can easily build a test suite and execute it:
   686 ```C
   687     UcxTestSuite* suite = ucx_test_suite_new();
   688     ucx_test_register(suite, testMyTestCase01);
   689     ucx_test_register(suite, testMyTestCase02);
   690     /* ... */
   691     ucx_test_run(suite, stdout); /* stdout, or any other FILE stream */
   692 ```
   694 ## Utilities
   696 *Header file:* [utils.h](api/utils_8h.html)  
   697 *Required modules:* [Allocator](#allocator), [String](#string)
   699 In this module we provide very general utility function for copy and compare
   700 operations.
   701 We also provide several `printf` variants to conveniently print formatted data
   702 to streams or strings.
   704 ### A simple copy program
   706 The utilities package provides several stream copy functions.
   707 One of them has a very simple interface and can, for instance, be used to copy
   708 whole files in a single call.
   709 This is a minimal working example:
   710 ```C
   711 #include <stdio.h>
   712 #include <ucx/utils.h>
   714 int main(int argc, char** argv) {
   716     if (argc != 3) {
   717         fprintf(stderr, "Use %s <src> <dest>", argv[0]);
   718         return 1;
   719     }
   721     FILE *srcf = fopen(argv[1], "r");   /* insert error handling on your own */
   722     FILE *destf = fopen(argv[2], "w");
   724     size_t n =  ucx_stream_copy(srcf, destf, fread, fwrite);
   725     printf("%zu bytes copied.\n", n);
   727     fclose(srcf);
   728     fclose(destf);
   731     return 0;
   732 }
   733 ```
   735 ### Automatic allocation for formatted strings
   737 The UCX utility function `ucx_asprintf()` and it's convenient shortcut
   738 `ucx_sprintf` allow easy formatting of strings, without ever having to worry
   739 about the required space.
   740 ```C
   741 sstr_t mystring = ucx_sprintf("The answer is: %d!", 42);
   742 ```
   743 Still, you have to pass `mystring.ptr` to `free()` (or the free function of
   744 your allocator, if you use `ucx_asprintf`).
   745 If you don't have all the information ready to build your string, you can even
   746 use a [UcxBuffer](#buffer) as a target with the utility function
   747 `ucx_bprintf()`.
   748 ```C
   749 UcxBuffer* strbuffer = ucx_buffer_new(NULL, 512, UCX_BUFFER_AUTOEXTEND);
   751 for (unsigned int i = 2 ; i < 100 ; i++) {
   752         ucx_bprintf(strbuffer, "Integer %d is %s\n",
   753                         i, prime(i) ? "prime" : "not prime");
   754 }
   756 /* print the result to stdout */
   757 printf("%s", (char*)strbuffer->space);
   759 ucx_buffer_free(strbuffer);
   760 ```

mercurial