docs/src/modules.md

Sun, 13 May 2018 17:34:06 +0200

author
Mike Becker <universe@uap-core.de>
date
Sun, 13 May 2018 17:34:06 +0200
changeset 301
0f83916c1639
parent 299
e7dfcf229625
child 302
8628147734d6
permissions
-rw-r--r--

documentation for the UcxStack

     1 ---
     2 title: Modules
     3 ---
     5 UCX provides several modules for data structures and algorithms.
     6 You may choose to use specific modules by inclueding the corresponding header
     7 file.
     8 Please note, that some modules make use of other UCX modules.
     9 For instance, the [Allocator](#allocator) module is used by many other modules
    10 to allow flexible memory allocation.
    11 By default the header files are placed into an `ucx` directory within your
    12 systems include directory. In this case you can use a module by including it
    13 via `#include <ucx/MODULENAME.h>`.
    14 Required modules are included automatically.
    16 <div id="modules" align="center">
    18 ----------------------- ----------------------      ----------------------------     -------------------------
    19 [Allocator](#allocator) [AVL&nbsp;Tree](#avl-tree)  [Buffer](#buffer)                [List](#list)
    20 [Logging](#logging)     [Map](#map)                 [Memory&nbsp;Pool](#memory-pool) [Properties](#properties)
    21 [Stack](#stack)         [String](#string)           [Testing](#testing)              [Utilities](#utilities)
    22 ----------------------- ----------------------      ----------------------------     -------------------------
    24 </div>
    26 ## Allocator
    28 *Header file:* [allocator.h](api/allocator_8h.html)  
    29 *Required modules:* None.
    31 A UCX allocator consists of a pointer to the memory area / pool and four
    32 function pointers to memory management functions operating on this memory
    33 area / pool. These functions shall behave equivalent to the standard libc
    34 functions `malloc`, `calloc`, `realloc` and `free`.
    36 The signature of the memory management functions is based on the signature
    37 of the respective libc function but each of them takes the pointer to the
    38 memory area / pool as first argument.
    40 As the pointer to the memory area / pool can be arbitrarily chosen, any data
    41 can be provided to the memory management functions. One example is the
    42 [UCX Memory Pool](#memory-pool).
    44 ## AVL Tree
    46 *Header file:* [avl.h](api/avl_8h.html)  
    47 *Required modules:* [Allocator](#allocator)
    49 This binary search tree implementation allows average O(1) insertion and
    50 removal of elements (excluding binary search time).
    51 All common binary tree operations are implemented. Furthermore, this module
    52 provides search functions via lower and upper bounds.
    54 ### Filtering items with a time window
    56 Suppose you have a list of items which contain a `time_t` value and your task
    57 is to find all items within a time window `[t_start, t_end]`.
    58 With AVL Trees this is easy:
    59 ```C
    60 /* ---------------------
    61  * Somewhere in a header
    62  */
    63 typedef struct {
    64     time_t ts;
    65     /* other important data */
    66 } MyObject;
    68 /* -----------
    69  * Source code
    70  */
    72 UcxAVLTree* tree = ucx_avl_new(ucx_longintcmp);
    73 /* ... populate tree with objects, use '& MyObject.ts' as key ... */
    76 /* Now find every item, with 30 <= ts <= 70 */
    77 time_t ts_start = 30;
    78 time_t ts_end = 70;
    80 printf("Values in range:\n");
    81 for (
    82         UcxAVLNode* node = ucx_avl_find_node(
    83             tree, (intptr_t) &ts_start,
    84             ucx_longintdist, UCX_AVL_FIND_LOWER_BOUNDED);
    85         node && (*(time_t*)node->key) <= ts_end;
    86         node = ucx_avl_succ(node)
    87     ) {
    88     printf(" ts: %ld\n", ((MyObject*)node->value)->ts);
    89 }
    91 ucx_avl_free_content(tree, free);
    92 ucx_avl_free(tree);
    93 ```
    95 ## Buffer
    97 *Header file:* [buffer.h](api/buffer_8h.html)  
    98 *Required modules:* None.
   100 Instances of this buffer implementation can be used to read from or to write to
   101 memory like you would do with a stream. This allows the use of
   102 `ucx_stream_copy()` from the [Utilities](#utilities) module to copy contents
   103 from one buffer to another or from file or network streams to the buffer and
   104 vice-versa.
   106 More features for convenient use of the buffer can be enabled, like automatic
   107 memory management and automatic resizing of the buffer space.
   108 See the documentation of the macro constants in the header file for more
   109 information.
   111 ### Add line numbers to a file
   113 When reading a file line by line, you have three options: first, you could limit
   114 the maximum supported line length.
   115 Second, you allocate a god buffer large
   116 enough for the most lines a text file could have.
   117 And third, undoubtedly the best option, you start with a small buffer, which
   118 adjusts on demand.
   119 An `UcxBuffer` can be created to do just that for you.
   120 Just pass the `UCX_BUFFER_AUTOEXTEND` option to the initialization function.
   121 Here is a full working program, which adds line numbers to a file.
   122 ```C
   123 #include <stdio.h>
   124 #include <ucx/buffer.h>
   125 #include <ucx/utils.h>
   127 int main(int argc, char** argv) {
   129     if (argc != 2) {
   130         fprintf(stderr, "Usage: %s <file>\n", argv[0]);
   131         return 1;
   132     }
   134     FILE* input = fopen(argv[1], "r");
   135     if (!input) {
   136         perror("Canno read input");
   137         return 1;
   138     }
   140     const size_t chunksize = 256;
   142     UcxBuffer* linebuf =
   143         ucx_buffer_new(
   144             NULL,       /* the buffer should manage the memory area for us */
   145             2*chunksize,  /* initial size should be twice the chunk size */
   146             UCX_BUFFER_AUTOEXTEND); /* the buffer will grow when necessary */
   148     size_t lineno = 1;
   149     do {
   150         /* read line chunk */
   151         size_t read = ucx_stream_ncopy(
   152                 input, linebuf, fread, ucx_buffer_write, chunksize);
   153         if (read == 0) break;
   155         /* handle line endings */
   156         do {
   157             sstr_t bufstr = ucx_buffer_to_sstr(linebuf);
   158             sstr_t nl = sstrchr(bufstr, '\n');
   159             if (nl.length == 0) break;
   161             size_t linelen = bufstr.length - nl.length;
   162             sstr_t linestr = sstrsubsl(bufstr, 0, linelen);
   164             printf("%zu: %" PRIsstr "\n", lineno++, SFMT(linestr));
   166             /* shift the buffer to the next line */
   167             ucx_buffer_shift_left(linebuf, linelen+1);
   168         } while(1);
   170     } while(1);
   172     /* print the 'noeol' line, if any */
   173     sstr_t lastline = ucx_buffer_to_sstr(linebuf);
   174     if (lastline.length > 0) {
   175         printf("%zu: %" PRIsstr, lineno, SFMT(lastline));
   176     }
   178     fclose(input);
   179     ucx_buffer_free(linebuf);
   181     return 0;
   182 }
   183 ```
   185 ## List
   187 *Header file:* [list.h](api/list_8h.html)  
   188 *Required modules:* [Allocator](#allocator)
   190 This module provides the data structure and several functions for a doubly
   191 linked list. Among the common operations like insert, remove, search and sort,
   192 we allow convenient iteration via a special `UCX_FOREACH` macro.
   194 ### Remove duplicates from an array of strings
   196 Assume you are given an array of `sstr_t` and want to create a list of these
   197 strings without duplicates.
   198 ```C
   199 #include <stdio.h>
   200 #include <ucx/list.h>
   201 #include <ucx/string.h>
   202 #include <ucx/utils.h>
   204 UcxList* remove_duplicates(sstr_t* array, size_t arrlen) {
   205     UcxList* list = NULL;
   206     for (size_t i = 0 ; i < arrlen ; ++i) {
   207         if (ucx_list_find(list, array+i, ucx_sstrcmp, NULL) == -1) {
   208             sstr_t* s = malloc(sizeof(sstr_t));
   209             *s = sstrdup(array[i]);
   210             list = ucx_list_append(list, s);
   211         }
   212     }
   213     return list;
   214 }
   216 /* we will need this function to clean up the list contents later */
   217 void free_sstr(void* ptr) {
   218     sstr_t* s = ptr;
   219     free(s->ptr);
   220     free(s);
   221 }
   223 /* ... */
   225 sstr_t* array = /* some array of strings */
   226 size_t arrlen = /* the length of the array */
   228 UcxList* list = remove_duplicates(array,arrlen);
   230 /* Iterate over the list and print the elements */
   231 UCX_FOREACH(elem, list) {
   232     sstr_t s = *((sstr_t*)elem->data);
   233     printf("%" PRIsstr "\n", SFMT(s));
   234 }
   236 /* Use our free function to free the duplicated strings. */
   237 ucx_list_free_content(list, free_sstr);
   238 ucx_list_free(list);
   239 ```
   241 ## Logging
   243 *Header file:* [logging.h](api/logging_8h.html)  
   244 *Required modules:* [Map](#map), [String](#string)
   246 The logging module comes with some predefined log levels and allows some more
   247 customization. You may choose if you want to get timestamps or source file and
   248 line number logged automatically when outputting a message.
   249 The following function call initializes a debug logger with all of the above
   250 information:
   251 ```C
   252     log = ucx_logger_new(stdout, UCX_LOGGER_DEBUG,
   253             UCX_LOGGER_LEVEL | UCX_LOGGER_TIMESTAMP | UCX_LOGGER_SOURCE);
   254 ```
   255 Afterwards you can use this logger with the predefined macros
   256 ```C
   257     ucx_logger_trace(log, "Verbose output");
   258     ucx_logger_debug(log, "Debug message");
   259     ucx_logger_info(log, "Information");
   260     ucx_logger_warn(log, "Warning");
   261     ucx_logger_error(log, "Error message");
   262 ```
   263 or you use
   264 ```C
   265     ucx_logger_log(log, CUSTOM_LEVEL, "Some message")
   266 ```
   267 When you use your custom log level, don't forget to register it with
   268 ```C
   269     ucx_logger_register_level(log, CUSTOM_LEVEL, "CUSTOM")
   270 ```
   271 where the last argument must be a string literal.
   273 ## Map
   275 *Header file:* [map.h](api/map_8h.html)  
   276 *Required modules:* [Allocator](#allocator), [String](#string)
   278 This module provides a hash map implementation using murmur hash 2 and separate
   279 chaining with linked lists. Similarly to the list module, we provide a
   280 `UCX_MAP_FOREACH` macro to conveniently iterate through the key/value pairs.
   282 ### Parsing command line options
   284 Assume you want to parse command line options and record them within a map.
   285 One way to do this is shown by the following code sample:
   286 ```C
   287     UcxMap* options = ucx_map_new(16);
   288     const char *NOARG = "";
   290     char *option = NULL;
   291     char optchar = 0;
   292     for(int i=1;i<argc;i++) {
   293         char *arg = argv[i];
   294         size_t len = strlen(arg);
   295         if(len > 1 && arg[0] == '-') {
   296             for(int c=1;c<len;c++) {
   297                 if(option) {
   298                     fprintf(stderr,
   299                             "Missing argument for option -%c\n", optchar);
   300                     return 1;
   301                 }
   302                 switch(arg[c]) {
   303                     default: {
   304                         fprintf(stderr, "Unknown option -%c\n\n", arg[c]);
   305                         return 1;
   306                     }
   307                     case 'v': {
   308                         ucx_map_cstr_put(options, "verbose", NOARG);
   309                         break;
   310                     }
   311                     case 'o': {
   312                         option = "output";
   313                         optchar = 'o';
   314                         break;
   315                     }
   316                 }
   317             }
   318         } else if(option) {
   319             ucx_map_cstr_put(options, option, arg);
   320             option = NULL;
   321         } else {
   322             /* ... handle argument that is not an option ... */
   323         }
   324     }
   325     if(option) {
   326         fprintf(stderr,
   327                 "Missing argument for option -%c\n", optchar);
   328         return 1;
   329     }
   330 ```
   331 With the following loop, you can access the previously recorded options:
   332 ```C
   333     UcxMapIterator iter = ucx_map_iterator(options);
   334     char *arg;
   335     UCX_MAP_FOREACH(optkey, arg, iter) {
   336         char* opt = optkey.data;
   337         if (*arg) {
   338             printf("%s = %s\n", opt, arg);
   339         } else {
   340             printf("%s active\n", opt);
   341         }
   342     }
   343 ```
   344 Don't forget to call `ucx_map_free()`, when you are done with the map.
   346 ## Memory Pool
   348 *Header file:* [mempool.h](api/mempool_8h.html)  
   349 *Required modules:* [Allocator](#allocator)
   351 Here we have a concrete allocator implementation in the sense of a memory pool.
   352 This pool allows you to register destructor functions for the allocated memory,
   353 which are automatically called on the destruction of the pool.
   354 But you may also register *independent* destructor functions within a pool in
   355 case, some external library allocated memory for you, which you wish to be
   356 destroyed together with this pool.
   358 ## Properties
   360 *Header file:* [properties.h](api/properties_8h.html)  
   361 *Required modules:* [Map](#map)
   363 This module provides load and store function for `*.properties` files.
   364 The key/value pairs are stored within an UCX Map.
   366 ### Example: Loading properties from a file
   368 ```C
   369 /* Open the file as usual */
   370 FILE* file = fopen("myprops.properties", "r");
   371 if (!file) {
   372     // error handling
   373     return 1;
   374 }
   376 /* Load the properties from the file */
   377 UcxMap* myprops = ucx_map_new(16);
   378 if (ucx_properties_load(myprops, file)) {
   379     /* ... error handling ... */
   380     fclose(file);
   381     ucx_map_free(myprops);
   382     return 1;
   383 }
   385 /* Print out the key/value pairs */
   386 char* propval;
   387 UcxMapIterator propiter = ucx_map_iterator(myprops);
   388 UCX_MAP_FOREACH(key, propval, propiter) {
   389     printf("%s = %s\n", (char*)key.data, propval);
   390 }
   392 /* Don't forget to free the values before freeing the map */
   393 ucx_map_free_content(myprops, NULL);
   394 ucx_map_free(myprops);
   395 fclose(file);
   396 ```
   398 ## Stack
   400 *Header file:* [stack.h](api/stack_8h.html)  
   401 *Required modules:* [Allocator](#allocator)
   403 This concrete implementation of an UCX Allocator allows you to grab some amount
   404 of memory which is then handled as a stack.
   405 Please note, that the term *stack* only refers to the behavior of this
   406 allocator. You may still choose to use either stack or heap memory
   407 for the underlying space.
   408 A typical use case is an algorithm where you need to allocate and free large
   409 amounts of memory very frequently.
   411 The following code sample shows how to initialize a stack and push and pop
   412 simple data.
   413 ```C
   414     const size_t len = 1024;
   415     char space[len];
   416     UcxStack stack;
   417     ucx_stack_init(&stack, space, len);
   419     int i = 42;
   420     float f = 3.14f;
   421     const char* str = "Hello!";
   422     size_t strn = 7;
   424     /* push the integer */
   425     ucx_stack_push(&stack, sizeof(int), &i);
   427     /* push the float and rember the address */
   428     float* remember = ucx_stack_push(&stack, sizeof(float), &f);
   430     /* push the string with zero terminator */
   431     ucx_stack_push(&stack, strn, str);
   433     /* if we forget, how big an element was, we can ask the stack */
   434     printf("Length of string: %zu\n", ucx_stack_topsize(&stack)-1);
   436     /* retrieve the string as sstr_t, without zero terminator! */
   437     sstr_t s;
   438     s.length = ucx_stack_topsize(&stack)-1;
   439     s.ptr = malloc(s.length);
   440     ucx_stack_popn(&stack, s.ptr, s.length);
   441     printf("%" PRIsstr "\n", SFMT(s));
   443     /* print the float directly from the stack and free it */
   444     printf("Float: %f\n", *remember);
   445     ucx_stack_free(&stack, remember);
   447     /* the last element is the integer */
   448     int j;
   449     ucx_stack_pop(&stack, &j);
   450     printf("Integer: %d\n", j);
   451 ```
   455 ## String
   457 *Header file:* [string.h](api/string_8h.html)  
   458 *Required modules:* [Allocator](#allocator)
   460 This module provides a safe implementation of bounded string.
   461 Usually C strings do not carry a length. While for zero-terminated strings you
   462 can easily get the length with `strlen`, this is not generally possible for
   463 arbitrary strings.
   464 The `sstr_t` type of this module always carries the string and its length to
   465 reduce the risk of buffer overflows dramatically.
   467 ### Initialization
   469 There are several ways to create an `sstr_t`:
   471 ```C
   472 /* (1) sstr() uses strlen() internally, hence cstr MUST be zero-terminated */
   473 sstr_t a = sstr(cstr);
   475 /* (2) cstr does not need to be zero-terminated, if length is specified */
   476 sstr_t b = sstrn(cstr, len);
   478 /* (3) S() macro creates sstr_t from a string using sizeof() and using sstrn().
   479        This version is especially useful for function arguments */
   480 sstr_t c = S("hello");
   482 /* (4) ST() macro creates sstr_t struct literal using sizeof() */
   483 sstr_t d = ST("hello");
   484 ```
   486 You should not use the `S()` or `ST()` macro with string of unknown origin,
   487 since the `sizeof()` call might not coincide with the string length in those
   488 cases. If you know what you are doing, it can save you some performance,
   489 because you do not need the `strlen()` call.
   491 ### Finding the position of a substring
   493 The `sstrstr()` function gives you a new `sstr_t` object starting with the
   494 requested substring. Thus determining the position comes down to a simple
   495 subtraction.
   497 ```C
   498 sstr_t haystack = ST("Here we go!");
   499 sstr_t needle = ST("we");
   500 sstr_t result = sstrstr(haystack, needle);
   501 if (result.ptr)
   502     printf("Found at position %zd.\n", haystack.length-result.length);
   503 else
   504     printf("Not found.\n");
   505 ```
   507 ### Spliting a string by a delimiter
   509 The `sstrsplit()` function (and its allocator based version `sstrsplit_a()`) is
   510 very powerful and might look a bit nasty at a first glance. But it is indeed
   511 very simple to use. It is even more convenient in combination with a memory
   512 pool.
   514 ```C
   515 sstr_t test = ST("here::are::some::strings");
   516 sstr_t delim = ST("::");
   518 ssize_t count = 0; /* no limit */
   519 UcxMempool* pool = ucx_mempool_new_default();
   521 sstr_t* result = sstrsplit_a(pool->allocator, test, delim, &count);
   522 for (ssize_t i = 0 ; i < count ; i++) {
   523     /* don't forget to specify the length via the %*s format specifier */
   524     printf("%*s\n", result[i].length, result[i].ptr);
   525 }
   527 ucx_mempool_destroy(pool);
   528 ```
   529 The output is:
   531     here
   532     are
   533     some
   534     strings
   536 The memory pool ensures, that all strings are freed.
   538 ## Testing
   540 *Header file:* [test.h](api/test_8h.html)  
   541 *Required modules:* None.
   543 This module provides a testing framework which allows you to execute test cases
   544 within test suites.
   545 To avoid code duplication within tests, we also provide the possibility to
   546 define test subroutines.
   548 You should declare test cases and subroutines in a header file per test unit
   549 and implement them as you would implement normal functions.
   550 ```C
   551     /* myunit.h */
   552     UCX_TEST(function_name);
   553     UCX_TEST_SUBROUTINE(subroutine_name, paramlist); /* optional */
   556     /* myunit.c */
   557     UCX_TEST_SUBROUTINE(subroutine_name, paramlist) {
   558         /* ... reusable tests with UCX_TEST_ASSERT() ... */
   559     }
   561     UCX_TEST(function_name) {
   562         /* ... resource allocation and other test preparation ... */
   564         /* mandatory marker for the start of the tests */
   565         UCX_TEST_BEGIN
   567         /*  ... verifications with UCX_TEST_ASSERT() ...
   568          * (and/or calls with UCX_TEST_CALL_SUBROUTINE())
   569          */
   571         /* mandatory marker for the end of the tests */
   572         UCX_TEST_END
   574         /* ... resource cleanup ...
   575          * (all code after UCX_TEST_END is always executed)
   576          */
   577     }
   578 ```
   579 If you want to use the `UCX_TEST_ASSERT()` macro in a function, you are
   580 *required* to use a `UCX_TEST_SUBROUTINE`.
   581 Otherwise the testing framework does not know where to jump, when the assertion
   582 fails.
   584 After implementing the tests, you can easily build a test suite and execute it:
   585 ```C
   586     UcxTestSuite* suite = ucx_test_suite_new();
   587     ucx_test_register(suite, testMyTestCase01);
   588     ucx_test_register(suite, testMyTestCase02);
   589     /* ... */
   590     ucx_test_run(suite, stdout); /* stdout, or any other FILE stream */
   591 ```
   593 ## Utilities
   595 *Header file:* [utils.h](api/utils_8h.html)  
   596 *Required modules:* [Allocator](#allocator), [String](#string)
   598 In this module we provide very general utility function for copy and compare
   599 operations.
   600 We also provide several `printf` variants to conveniently print formatted data
   601 to streams or strings.
   603 ### A simple copy program
   605 The utilities package provides several stream copy functions.
   606 One of them has a very simple interface and can, for instance, be used to copy
   607 whole files in a single call.
   608 This is a minimal working example:
   609 ```C
   610 #include <stdio.h>
   611 #include <ucx/utils.h>
   613 int main(int argc, char** argv) {
   615     if (argc != 3) {
   616         fprintf(stderr, "Use %s <src> <dest>", argv[0]);
   617         return 1;
   618     }
   620     FILE *srcf = fopen(argv[1], "r");   /* insert error handling on your own */
   621     FILE *destf = fopen(argv[2], "w");
   623     size_t n =  ucx_stream_copy(srcf, destf, fread, fwrite);
   624     printf("%zu bytes copied.\n", n);
   626     fclose(srcf);
   627     fclose(destf);
   630     return 0;
   631 }
   632 ```
   634 ### Automatic allocation for formatted strings
   636 The UCX utility function `ucx_asprintf()` and it's convenient shortcut
   637 `ucx_sprintf` allow easy formatting of strings, without ever having to worry
   638 about the required space.
   639 ```C
   640 sstr_t mystring = ucx_sprintf("The answer is: %d!", 42);
   641 ```
   642 Still, you have to pass `mystring.ptr` to `free()` (or the free function of
   643 your allocator, if you use `ucx_asprintf`).
   644 If you don't have all the information ready to build your string, you can even
   645 use a [UcxBuffer](#buffer) as a target with the utility function
   646 `ucx_bprintf()`.
   647 ```C
   648 UcxBuffer* strbuffer = ucx_buffer_new(NULL, 512, UCX_BUFFER_AUTOEXTEND);
   650 for (unsigned int i = 2 ; i < 100 ; i++) {
   651         ucx_bprintf(strbuffer, "Integer %d is %s\n",
   652                         i, prime(i) ? "prime" : "not prime");
   653 }
   655 /* print the result to stdout */
   656 printf("%s", (char*)strbuffer->space);
   658 ucx_buffer_free(strbuffer);
   659 ```

mercurial