src/array_list.c

Tue, 07 Feb 2023 20:08:45 +0100

author
Mike Becker <universe@uap-core.de>
date
Tue, 07 Feb 2023 20:08:45 +0100
changeset 650
77021e06b1a8
parent 643
5700ba9154ab
child 654
c9d008861178
permissions
-rw-r--r--

fix code not compiling under windows+mingw

universe@606 1 /*
universe@606 2 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER.
universe@606 3 *
universe@606 4 * Copyright 2021 Mike Becker, Olaf Wintermann All rights reserved.
universe@606 5 *
universe@606 6 * Redistribution and use in source and binary forms, with or without
universe@606 7 * modification, are permitted provided that the following conditions are met:
universe@606 8 *
universe@606 9 * 1. Redistributions of source code must retain the above copyright
universe@606 10 * notice, this list of conditions and the following disclaimer.
universe@606 11 *
universe@606 12 * 2. Redistributions in binary form must reproduce the above copyright
universe@606 13 * notice, this list of conditions and the following disclaimer in the
universe@606 14 * documentation and/or other materials provided with the distribution.
universe@606 15 *
universe@606 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
universe@606 17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
universe@606 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
universe@606 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
universe@606 20 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
universe@606 21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
universe@606 22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
universe@606 23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
universe@606 24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
universe@606 25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
universe@606 26 * POSSIBILITY OF SUCH DAMAGE.
universe@606 27 */
universe@606 28
universe@606 29 #include "cx/array_list.h"
universe@610 30 #include <assert.h>
universe@610 31 #include <string.h>
universe@606 32
universe@628 33 // LOW LEVEL ARRAY LIST FUNCTIONS
universe@607 34
universe@612 35 enum cx_array_copy_result cx_array_copy(
universe@610 36 void **target,
universe@610 37 size_t *size,
universe@610 38 size_t *capacity,
universe@610 39 size_t index,
universe@610 40 void const *src,
universe@610 41 size_t elem_size,
universe@610 42 size_t elem_count,
universe@610 43 struct cx_array_reallocator_s *reallocator
universe@610 44 ) {
universe@628 45 // assert pointers
universe@610 46 assert(target != NULL);
universe@610 47 assert(size != NULL);
universe@610 48 assert(src != NULL);
universe@607 49
universe@628 50 // determine capacity
universe@610 51 size_t cap = capacity == NULL ? *size : *capacity;
universe@610 52
universe@628 53 // check if resize is required
universe@627 54 size_t minsize = index + elem_count;
universe@627 55 size_t newsize = *size < minsize ? minsize : *size;
universe@610 56 bool needrealloc = newsize > cap;
universe@610 57
universe@628 58 // reallocate if possible
universe@610 59 if (needrealloc) {
universe@628 60 // a reallocator and a capacity variable must be available
universe@610 61 if (reallocator == NULL || capacity == NULL) {
universe@610 62 return CX_ARRAY_COPY_REALLOC_NOT_SUPPORTED;
universe@610 63 }
universe@610 64
universe@628 65 // check, if we need to repair the src pointer
universe@611 66 uintptr_t targetaddr = (uintptr_t) *target;
universe@611 67 uintptr_t srcaddr = (uintptr_t) src;
universe@611 68 bool repairsrc = targetaddr <= srcaddr
universe@611 69 && srcaddr < targetaddr + cap * elem_size;
universe@611 70
universe@628 71 // calculate new capacity (next number divisible by 16)
universe@625 72 cap = newsize - (newsize % 16) + 16;
universe@625 73 assert(cap > newsize);
universe@610 74
universe@628 75 // perform reallocation
universe@610 76 void *newmem = reallocator->realloc(
universe@610 77 *target, cap, elem_size, reallocator
universe@610 78 );
universe@610 79 if (newmem == NULL) {
universe@610 80 return CX_ARRAY_COPY_REALLOC_FAILED;
universe@610 81 }
universe@610 82
universe@628 83 // repair src pointer, if necessary
universe@611 84 if (repairsrc) {
universe@611 85 src = ((char *) newmem) + (srcaddr - targetaddr);
universe@611 86 }
universe@611 87
universe@628 88 // store new pointer and capacity
universe@610 89 *target = newmem;
universe@610 90 *capacity = cap;
universe@610 91 }
universe@610 92
universe@628 93 // determine target pointer
universe@610 94 char *start = *target;
universe@610 95 start += index * elem_size;
universe@610 96
universe@628 97 // copy elements and set new size
universe@611 98 memmove(start, src, elem_count * elem_size);
universe@610 99 *size = newsize;
universe@610 100
universe@628 101 // return successfully
universe@610 102 return CX_ARRAY_COPY_SUCCESS;
universe@610 103 }
universe@607 104
universe@643 105 #ifndef CX_ARRAY_SWAP_SBO_SIZE
universe@623 106 #define CX_ARRAY_SWAP_SBO_SIZE 512
universe@643 107 #endif
universe@623 108
universe@623 109 void cx_array_swap(
universe@623 110 void *arr,
universe@623 111 size_t elem_size,
universe@623 112 size_t idx1,
universe@623 113 size_t idx2
universe@623 114 ) {
universe@628 115 // short circuit
universe@623 116 if (idx1 == idx2) return;
universe@623 117
universe@623 118 char sbo_mem[CX_ARRAY_SWAP_SBO_SIZE];
universe@623 119 void *tmp;
universe@623 120
universe@628 121 // decide if we can use the local buffer
universe@623 122 if (elem_size > CX_ARRAY_SWAP_SBO_SIZE) {
universe@623 123 tmp = malloc(elem_size);
universe@628 124 // we don't want to enforce error handling
universe@623 125 if (tmp == NULL) abort();
universe@623 126 } else {
universe@623 127 tmp = sbo_mem;
universe@623 128 }
universe@623 129
universe@628 130 // calculate memory locations
universe@623 131 char *left = arr, *right = arr;
universe@623 132 left += idx1 * elem_size;
universe@623 133 right += idx2 * elem_size;
universe@623 134
universe@628 135 // three-way swap
universe@623 136 memcpy(tmp, left, elem_size);
universe@623 137 memcpy(left, right, elem_size);
universe@623 138 memcpy(right, tmp, elem_size);
universe@623 139
universe@628 140 // free dynamic memory, if it was needed
universe@623 141 if (tmp != sbo_mem) {
universe@623 142 free(tmp);
universe@623 143 }
universe@623 144 }
universe@623 145
universe@628 146 // HIGH LEVEL ARRAY LIST FUNCTIONS
universe@607 147
universe@607 148 typedef struct {
universe@607 149 struct cx_list_s base;
universe@607 150 void *data;
universe@610 151 struct cx_array_reallocator_s reallocator;
universe@607 152 } cx_array_list;
universe@607 153
universe@610 154 static void *cx_arl_realloc(
universe@610 155 void *array,
universe@610 156 size_t capacity,
universe@610 157 size_t elem_size,
universe@610 158 struct cx_array_reallocator_s *alloc
universe@610 159 ) {
universe@628 160 // retrieve the pointer to the list allocator
universe@610 161 CxAllocator const *al = alloc->ptr1;
universe@610 162
universe@628 163 // use the list allocator to reallocate the memory
universe@610 164 return cxRealloc(al, array, capacity * elem_size);
universe@610 165 }
universe@610 166
universe@607 167 static void cx_arl_destructor(struct cx_list_s *list) {
universe@610 168 cx_array_list *arl = (cx_array_list *) list;
universe@607 169 cxFree(list->allocator, arl->data);
universe@607 170 }
universe@607 171
universe@638 172 static size_t cx_arl_insert_array(
universe@629 173 struct cx_list_s *list,
universe@638 174 size_t index,
universe@629 175 void const *array,
universe@629 176 size_t n
universe@629 177 ) {
universe@638 178 // out of bounds and special case check
universe@638 179 if (index > list->size || n == 0) return 0;
universe@638 180
universe@638 181 // get a correctly typed pointer to the list
universe@629 182 cx_array_list *arl = (cx_array_list *) list;
universe@638 183
universe@638 184 // do we need to move some elements?
universe@638 185 if (index < list->size) {
universe@638 186 char const *first_to_move = (char const *) arl->data;
universe@638 187 first_to_move += index * list->itemsize;
universe@638 188 size_t elems_to_move = list->size - index;
universe@638 189 size_t start_of_moved = index + n;
universe@638 190
universe@638 191 if (CX_ARRAY_COPY_SUCCESS != cx_array_copy(
universe@638 192 &arl->data,
universe@638 193 &list->size,
universe@638 194 &list->capacity,
universe@638 195 start_of_moved,
universe@638 196 first_to_move,
universe@638 197 list->itemsize,
universe@638 198 elems_to_move,
universe@638 199 &arl->reallocator
universe@638 200 )) {
universe@638 201 // if moving existing elems is unsuccessful, abort
universe@638 202 return 0;
universe@638 203 }
universe@638 204 }
universe@638 205
universe@638 206 // note that if we had to move the elements, the following operation
universe@638 207 // is guaranteed to succeed, because we have the memory already allocated
universe@638 208 // therefore, it is impossible to leave this function with an invalid array
universe@638 209
universe@638 210 // place the new elements
universe@629 211 if (CX_ARRAY_COPY_SUCCESS == cx_array_copy(
universe@629 212 &arl->data,
universe@629 213 &list->size,
universe@629 214 &list->capacity,
universe@638 215 index,
universe@629 216 array,
universe@629 217 list->itemsize,
universe@629 218 n,
universe@629 219 &arl->reallocator
universe@629 220 )) {
universe@629 221 return n;
universe@629 222 } else {
universe@629 223 // array list implementation is "all or nothing"
universe@629 224 return 0;
universe@629 225 }
universe@629 226 }
universe@629 227
universe@641 228 static int cx_arl_insert_element(
universe@641 229 struct cx_list_s *list,
universe@641 230 size_t index,
universe@641 231 void const *element
universe@641 232 ) {
universe@641 233 return 1 != cx_arl_insert_array(list, index, element, 1);
universe@641 234 }
universe@641 235
universe@607 236 static int cx_arl_insert_iter(
universe@630 237 struct cx_mut_iterator_s *iter,
universe@607 238 void const *elem,
universe@607 239 int prepend
universe@607 240 ) {
universe@619 241 struct cx_list_s *list = iter->src_handle;
universe@619 242 if (iter->index < list->size) {
universe@641 243 int result = cx_arl_insert_element(
universe@619 244 list,
universe@619 245 iter->index + 1 - prepend,
universe@641 246 elem
universe@619 247 );
universe@619 248 if (result == 0 && prepend != 0) {
universe@619 249 iter->index++;
universe@619 250 iter->elem_handle = ((char *) iter->elem_handle) + list->itemsize;
universe@619 251 }
universe@619 252 return result;
universe@619 253 } else {
universe@641 254 int result = cx_arl_insert_element(list, list->size, elem);
universe@619 255 iter->index = list->size;
universe@619 256 return result;
universe@619 257 }
universe@607 258 }
universe@607 259
universe@607 260 static int cx_arl_remove(
universe@607 261 struct cx_list_s *list,
universe@607 262 size_t index
universe@607 263 ) {
universe@628 264 // out-of-bounds check
universe@613 265 if (index >= list->size) {
universe@613 266 return 1;
universe@613 267 }
universe@613 268
universe@628 269 // short-circuit removal of last element
universe@624 270 if (index == list->size - 1) {
universe@624 271 list->size--;
universe@624 272 return 0;
universe@624 273 }
universe@613 274
universe@628 275 // just move the elements starting at index to the left
universe@624 276 cx_array_list *arl = (cx_array_list *) list;
universe@613 277 int result = cx_array_copy(
universe@613 278 &arl->data,
universe@613 279 &list->size,
universe@613 280 &list->capacity,
universe@613 281 index,
universe@613 282 ((char *) arl->data) + (index + 1) * list->itemsize,
universe@613 283 list->itemsize,
universe@626 284 list->size - index - 1,
universe@613 285 &arl->reallocator
universe@613 286 );
universe@613 287 if (result == 0) {
universe@628 288 // decrease the size
universe@613 289 list->size--;
universe@613 290 }
universe@613 291 return result;
universe@607 292 }
universe@607 293
universe@610 294 static void *cx_arl_at(
universe@607 295 struct cx_list_s const *list,
universe@607 296 size_t index
universe@607 297 ) {
universe@610 298 if (index < list->size) {
universe@610 299 cx_array_list const *arl = (cx_array_list const *) list;
universe@610 300 char *space = arl->data;
universe@610 301 return space + index * list->itemsize;
universe@610 302 } else {
universe@610 303 return NULL;
universe@610 304 }
universe@607 305 }
universe@607 306
universe@607 307 static size_t cx_arl_find(
universe@607 308 struct cx_list_s const *list,
universe@607 309 void const *elem
universe@607 310 ) {
universe@614 311 char *cur = ((cx_array_list const *) list)->data;
universe@614 312
universe@614 313 for (size_t i = 0; i < list->size; i++) {
universe@614 314 if (0 == list->cmpfunc(elem, cur)) {
universe@614 315 return i;
universe@614 316 }
universe@614 317 cur += list->itemsize;
universe@614 318 }
universe@614 319
universe@614 320 return list->size;
universe@607 321 }
universe@607 322
universe@607 323 static void cx_arl_sort(struct cx_list_s *list) {
universe@615 324 qsort(((cx_array_list *) list)->data,
universe@615 325 list->size,
universe@615 326 list->itemsize,
universe@615 327 list->cmpfunc
universe@615 328 );
universe@607 329 }
universe@607 330
universe@607 331 static int cx_arl_compare(
universe@607 332 struct cx_list_s const *list,
universe@607 333 struct cx_list_s const *other
universe@607 334 ) {
universe@622 335 if (list->size == other->size) {
universe@622 336 char const *left = ((cx_array_list const *) list)->data;
universe@622 337 char const *right = ((cx_array_list const *) other)->data;
universe@622 338 for (size_t i = 0; i < list->size; i++) {
universe@622 339 int d = list->cmpfunc(left, right);
universe@622 340 if (d != 0) {
universe@622 341 return d;
universe@622 342 }
universe@622 343 left += list->itemsize;
universe@622 344 right += other->itemsize;
universe@622 345 }
universe@622 346 return 0;
universe@622 347 } else {
universe@622 348 return list->size < other->size ? -1 : 1;
universe@622 349 }
universe@607 350 }
universe@607 351
universe@607 352 static void cx_arl_reverse(struct cx_list_s *list) {
universe@623 353 if (list->size < 2) return;
universe@623 354 void *data = ((cx_array_list const *) list)->data;
universe@623 355 size_t half = list->size / 2;
universe@623 356 for (size_t i = 0; i < half; i++) {
universe@623 357 cx_array_swap(data, list->itemsize, i, list->size - 1 - i);
universe@623 358 }
universe@607 359 }
universe@607 360
universe@630 361 static bool cx_arl_iter_valid(void const *it) {
universe@630 362 struct cx_iterator_s const *iter = it;
universe@616 363 struct cx_list_s const *list = iter->src_handle;
universe@616 364 return iter->index < list->size;
universe@616 365 }
universe@616 366
universe@630 367 static void *cx_arl_iter_current(void const *it) {
universe@630 368 struct cx_iterator_s const *iter = it;
universe@616 369 return iter->elem_handle;
universe@616 370 }
universe@616 371
universe@630 372 static void cx_arl_iter_next(void *it) {
universe@630 373 struct cx_iterator_base_s *itbase = it;
universe@630 374 if (itbase->remove) {
universe@630 375 struct cx_mut_iterator_s *iter = it;
universe@630 376 itbase->remove = false;
universe@616 377 cx_arl_remove(iter->src_handle, iter->index);
universe@616 378 } else {
universe@630 379 struct cx_iterator_s *iter = it;
universe@616 380 iter->index++;
universe@620 381 iter->elem_handle =
universe@620 382 ((char *) iter->elem_handle)
universe@620 383 + ((struct cx_list_s const *) iter->src_handle)->itemsize;
universe@616 384 }
universe@616 385 }
universe@616 386
universe@630 387 static bool cx_arl_iter_flag_rm(void *it) {
universe@630 388 struct cx_iterator_base_s *iter = it;
universe@630 389 if (iter->mutating) {
universe@630 390 iter->remove = true;
universe@630 391 return true;
universe@630 392 } else {
universe@630 393 return false;
universe@630 394 }
universe@630 395 }
universe@630 396
universe@607 397 static struct cx_iterator_s cx_arl_iterator(
universe@630 398 struct cx_list_s const *list,
universe@607 399 size_t index
universe@607 400 ) {
universe@607 401 struct cx_iterator_s iter;
universe@607 402
universe@616 403 iter.index = index;
universe@616 404 iter.src_handle = list;
universe@616 405 iter.elem_handle = cx_arl_at(list, index);
universe@630 406 iter.base.valid = cx_arl_iter_valid;
universe@630 407 iter.base.current = cx_arl_iter_current;
universe@630 408 iter.base.next = cx_arl_iter_next;
universe@630 409 iter.base.flag_removal = cx_arl_iter_flag_rm;
universe@630 410 iter.base.remove = false;
universe@630 411 iter.base.mutating = false;
universe@616 412
universe@607 413 return iter;
universe@607 414 }
universe@607 415
universe@607 416 static cx_list_class cx_array_list_class = {
universe@607 417 cx_arl_destructor,
universe@641 418 cx_arl_insert_element,
universe@638 419 cx_arl_insert_array,
universe@607 420 cx_arl_insert_iter,
universe@607 421 cx_arl_remove,
universe@607 422 cx_arl_at,
universe@607 423 cx_arl_find,
universe@607 424 cx_arl_sort,
universe@607 425 cx_arl_compare,
universe@607 426 cx_arl_reverse,
universe@607 427 cx_arl_iterator,
universe@607 428 };
universe@607 429
universe@606 430 CxList *cxArrayListCreate(
universe@606 431 CxAllocator const *allocator,
universe@606 432 CxListComparator comparator,
universe@606 433 size_t item_size,
universe@606 434 size_t initial_capacity
universe@606 435 ) {
universe@607 436 cx_array_list *list = cxCalloc(allocator, 1, sizeof(cx_array_list));
universe@607 437 if (list == NULL) return NULL;
universe@607 438
universe@607 439 list->data = cxCalloc(allocator, initial_capacity, item_size);
universe@607 440 if (list->data == NULL) {
universe@607 441 cxFree(allocator, list);
universe@607 442 return NULL;
universe@607 443 }
universe@607 444
universe@607 445 list->base.cl = &cx_array_list_class;
universe@607 446 list->base.allocator = allocator;
universe@607 447 list->base.cmpfunc = comparator;
universe@607 448 list->base.itemsize = item_size;
universe@607 449 list->base.capacity = initial_capacity;
universe@607 450
universe@628 451 // configure the reallocator
universe@610 452 list->reallocator.realloc = cx_arl_realloc;
universe@610 453 list->reallocator.ptr1 = (void *) allocator;
universe@610 454
universe@607 455 return (CxList *) list;
universe@606 456 }

mercurial